These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34525659)

  • 1. Droplet plume emission during plasmonic bubble growth in ternary liquids.
    Li X; Chen Y; Wang Y; Chong KL; Verzicco R; Zandvliet HJW; Lohse D
    Phys Rev E; 2021 Aug; 104(2-2):025101. PubMed ID: 34525659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces.
    Zeng B; Chong KL; Wang Y; Diddens C; Li X; Detert M; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.
    Tan H; Diddens C; Lv P; Kuerten JG; Zhang X; Lohse D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8642-7. PubMed ID: 27418601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulation of Evaporation of Ethanol-Water Mixture Droplets on Isothermal and Heated Substrates.
    Bozorgmehr B; Murray BT
    ACS Omega; 2021 May; 6(19):12577-12590. PubMed ID: 34056408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition in the growth mode of plasmonic bubbles in binary liquids.
    Detert M; Chen Y; Zandvliet HJW; Lohse D
    Soft Matter; 2022 Jun; 18(21):4136-4145. PubMed ID: 35583141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant and explosive plasmonic bubbles by delayed nucleation.
    Wang Y; Zaytsev ME; Lajoinie G; The HL; Eijkel JCT; van den Berg A; Versluis M; Weckhuysen BM; Zhang X; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7676-7681. PubMed ID: 29997175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface.
    Tan H; Diddens C; Versluis M; Butt HJ; Lohse D; Zhang X
    Soft Matter; 2017 Apr; 13(15):2749-2759. PubMed ID: 28295107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase Separation of an Evaporating Ternary Solution in a Hele-Shaw Cell.
    Lopez de la Cruz RA; Schilder N; Zhang X; Lohse D
    Langmuir; 2021 Sep; 37(35):10450-10460. PubMed ID: 34424709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Bubble Nucleation in Binary Liquids.
    Detert M; Zeng B; Wang Y; Le The H; Zandvliet HJW; Lohse D
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(4):2591-2597. PubMed ID: 32030112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air.
    Li X; Wang Y; Zaytsev ME; Lajoinie G; Le The H; Bomer JG; Eijkel JCT; Zandvliet HJW; Zhang X; Lohse D
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(38):23586-23593. PubMed ID: 31583035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics and kinetics of vapor bubbles nucleation in one-component liquids.
    Alekseechkin NV
    J Phys Chem B; 2012 Aug; 116(31):9445-59. PubMed ID: 22804478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clusterlike instabilities in bubble-plume-driven flows.
    Etha SA; Jena A; Lakkaraju R
    Phys Rev E; 2019 May; 99(5-1):053101. PubMed ID: 31212562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Microbubble Dynamics in Binary Liquids.
    Li X; Wang Y; Zeng B; Detert M; Prosperetti A; Zandvliet HJW; Lohse D
    J Phys Chem Lett; 2020 Oct; 11(20):8631-8637. PubMed ID: 32960058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet and bubble formation of combined oil and gas releases in subsea blowouts.
    Zhao L; Boufadel MC; King T; Robinson B; Gao F; Socolofsky SA; Lee K
    Mar Pollut Bull; 2017 Jul; 120(1-2):203-216. PubMed ID: 28511939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On explosive boiling of a multicomponent Leidenfrost drop.
    Lyu S; Tan H; Wakata Y; Yang X; Law CK; Lohse D; Sun C
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33419924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonated water droplets on a dusty hydrophobic surface.
    Abubakar AA; Yilbas BS; Al-Qahtani H; Hassan G; Yakubu M; Hatab SB
    Soft Matter; 2020 Aug; 16(30):7144-7155. PubMed ID: 32666999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial spreading of turbulent bubble plumes.
    Sigurðardóttir A; Barnard J; Bullamore D; McCormick A; Cartwright J; Cardoso S
    Philos Trans A Math Phys Eng Sci; 2020 Sep; 378(2179):20190513. PubMed ID: 32762428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Bubble Growth in Plasmonic Nanoparticle Suspension.
    Zhang Q; Neal RD; Huang D; Neretina S; Lee E; Luo T
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26680-26687. PubMed ID: 32402195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.