These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34525667)

  • 1. Stochastic characterization and reconstruction of material microstructures for establishment of process-structure-property linkage using the deep generative model.
    Noguchi S; Inoue J
    Phys Rev E; 2021 Aug; 104(2-2):025302. PubMed ID: 34525667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Text-to-Microstructure Generation Using Generative Deep Learning.
    Zheng X; Watanabe I; Paik J; Li J; Guo X; Naito M
    Small; 2024 May; ():e2402685. PubMed ID: 38770745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Transfer Learning Approach for Microstructure Reconstruction and Structure-property Predictions.
    Li X; Zhang Y; Zhao H; Burkhart C; Brinson LC; Chen W
    Sci Rep; 2018 Sep; 8(1):13461. PubMed ID: 30194426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-learning-based porous media microstructure quantitative characterization and reconstruction method.
    Huang Y; Xiang Z; Qian M
    Phys Rev E; 2022 Jan; 105(1-2):015308. PubMed ID: 35193256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and reconstruction of 3D stochastic microstructures via supervised learning.
    Bostanabad R; Chen W; Apley DW
    J Microsc; 2016 Dec; 264(3):282-297. PubMed ID: 27378619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast inverse design of microstructures via generative invariance networks.
    Lee XY; Waite JR; Yang CH; Pokuri BSS; Joshi A; Balu A; Hegde C; Ganapathysubramanian B; Sarkar S
    Nat Comput Sci; 2021 Mar; 1(3):229-238. PubMed ID: 38183201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure reconstruction of 2D/3D random materials via diffusion-based deep generative models.
    Lyu X; Ren X
    Sci Rep; 2024 Feb; 14(1):5041. PubMed ID: 38424207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesizing controlled microstructures of porous media using generative adversarial networks and reinforcement learning.
    Nguyen PCH; Vlassis NN; Bahmani B; Sun W; Udaykumar HS; Baek SS
    Sci Rep; 2022 May; 12(1):9034. PubMed ID: 35641549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design.
    Mao Y; Yang Z; Jha D; Paul A; Liao WK; Choudhary A; Agrawal A
    Integr Mater Manuf Innov; 2022; 11(4):637-647. PubMed ID: 36530375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials.
    Chun S; Roy S; Nguyen YT; Choi JB; Udaykumar HS; Baek SS
    Sci Rep; 2020 Aug; 10(1):13307. PubMed ID: 32764643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of the Underlying Space in Microscopic Images via Deep Learning for Additively Manufactured Piezoceramics.
    Yang W; Wang Z; Yang T; He L; Song X; Liu Y; Chen L
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53439-53453. PubMed ID: 34469098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced Steel Microstructural Classification by Deep Learning Methods.
    Azimi SM; Britz D; Engstler M; Fritz M; Mücklich F
    Sci Rep; 2018 Feb; 8(1):2128. PubMed ID: 29391406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Visual Tracking with Variational Structure Attention Network.
    Kim Y; Shin J; Park H; Paik J
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning in Mechanical Metamaterials: From Prediction and Generation to Inverse Design.
    Zheng X; Zhang X; Chen TT; Watanabe I
    Adv Mater; 2023 Nov; 35(45):e2302530. PubMed ID: 37332101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Cyclic Stress-Strain Property of Steels by Crystal Plasticity Simulations and Machine Learning.
    Miyazawa Y; Briffod F; Shiraiwa T; Enoki M
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-supervised learning and prediction of microstructure evolution with convolutional recurrent neural networks.
    Yang K; Cao Y; Zhang Y; Fan S; Tang M; Aberg D; Sadigh B; Zhou F
    Patterns (N Y); 2021 May; 2(5):100243. PubMed ID: 34036288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate stochastic reconstruction of heterogeneous microstructures by limited x-ray tomographic projections.
    Li H; Kaira S; Mertens J; Chawla N; Jiao Y
    J Microsc; 2016 Dec; 264(3):339-350. PubMed ID: 27439786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminative and generative models for anatomical shape analysis on point clouds with deep neural networks.
    Gutiérrez-Becker B; Sarasua I; Wachinger C
    Med Image Anal; 2021 Jan; 67():101852. PubMed ID: 33129154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomaly Detection of Time Series With Smoothness-Inducing Sequential Variational Auto-Encoder.
    Li L; Yan J; Wang H; Jin Y
    IEEE Trans Neural Netw Learn Syst; 2021 Mar; 32(3):1177-1191. PubMed ID: 32287020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep reinforcement learning for microstructural optimisation of silica aerogels.
    Pandit P; Abdusalamov R; Itskov M; Rege A
    Sci Rep; 2024 Jan; 14(1):1511. PubMed ID: 38233434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.