These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 34526500)

  • 1. A deep-learning framework for multi-level peptide-protein interaction prediction.
    Lei Y; Li S; Liu Z; Wan F; Tian T; Li S; Zhao D; Zeng J
    Nat Commun; 2021 Sep; 12(1):5465. PubMed ID: 34526500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DP-site: A dual deep learning-based method for protein-peptide interaction site prediction.
    Shafiee S; Fathi A; Taherzadeh G
    Methods; 2024 Sep; 229():17-29. PubMed ID: 38871095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
    Hertz T; Yanover C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-peptide binding residue prediction based on protein language models and cross-attention mechanism.
    Hu J; Chen KX; Rao B; Ni JY; Thafar MA; Albaradei S; Arif M
    Anal Biochem; 2024 Nov; 694():115637. PubMed ID: 39121938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PSSP-MVIRT: peptide secondary structure prediction based on a multi-view deep learning architecture.
    Cao X; He W; Chen Z; Li Y; Wang K; Zhang H; Wei L; Cui L; Su R; Wei L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GAPS: a geometric attention-based network for peptide binding site identification by the transfer learning approach.
    Zhu C; Zhang C; Shang T; Zhang C; Zhai S; Cao L; Xu Z; Su Z; Song Y; Su A; Li C; Duan H
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38990514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A regression framework incorporating quantitative and negative interaction data improves quantitative prediction of PDZ domain-peptide interaction from primary sequence.
    Shao X; Tan CS; Voss C; Li SS; Deng N; Bader GD
    Bioinformatics; 2011 Feb; 27(3):383-90. PubMed ID: 21127034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbocharging protein binding site prediction with geometric attention, inter-resolution transfer learning, and homology-based augmentation.
    Lee D; Hwang W; Byun J; Shin B
    BMC Bioinformatics; 2024 Sep; 25(1):306. PubMed ID: 39304807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MATHLA: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism.
    Ye Y; Wang J; Xu Y; Wang Y; Pan Y; Song Q; Liu X; Wan J
    BMC Bioinformatics; 2021 Jan; 22(1):7. PubMed ID: 33407098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based prediction of protein-peptide specificity in Rosetta.
    King CA; Bradley P
    Proteins; 2010 Dec; 78(16):3437-49. PubMed ID: 20954182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible docking of peptides to proteins using CABS-dock.
    Kurcinski M; Badaczewska-Dawid A; Kolinski M; Kolinski A; Kmiecik S
    Protein Sci; 2020 Jan; 29(1):211-222. PubMed ID: 31682301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CELA-MFP: a contrast-enhanced and label-adaptive framework for multi-functional therapeutic peptides prediction.
    Fang Y; Luo M; Ren Z; Wei L; Wei DQ
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 39038935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep attention model for wide-genome protein-peptide binding affinity prediction at a sequence level.
    Sun X; Wu Z; Su J; Li C
    Int J Biol Macromol; 2024 Sep; 276(Pt 2):133811. PubMed ID: 38996881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Computational Methods for Protein-peptide Complex Structure Prediction.
    Yang C; Xu X; Xiang C
    Curr Med Chem; 2024; 31(26):4058-4078. PubMed ID: 37888817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures.
    Stein A; Aloy P
    PLoS Comput Biol; 2010 May; 6(5):e1000789. PubMed ID: 20502673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptriever: a Bi-Encoder approach for large-scale protein-peptide binding search.
    Gurvich R; Markel G; Tanoli Z; Meirson T
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38710496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPOT-Peptide: Template-Based Prediction of Peptide-Binding Proteins and Peptide-Binding Sites.
    Litfin T; Yang Y; Zhou Y
    J Chem Inf Model; 2019 Feb; 59(2):924-930. PubMed ID: 30698427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.