These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Faraday rotation due to excitation of magnetoplasmons in graphene microribbons. Tymchenko M; Nikitin AY; Martín-Moreno L ACS Nano; 2013 Nov; 7(11):9780-7. PubMed ID: 24079266 [TBL] [Abstract][Full Text] [Related]
4. Linear mode conversion of terahertz radiation into terahertz surface magnetoplasmons on a rippled surface of magnetized n-InSb. Kumar P; Kumar M; Tripathi VK Opt Lett; 2016 Apr; 41(7):1408-11. PubMed ID: 27192248 [TBL] [Abstract][Full Text] [Related]
5. Nonreciprocal waveguiding structures for THz region based on InSb. Kwiecien P; Richter I; Kuzmiak V; Čtyroký J J Opt Soc Am A Opt Image Sci Vis; 2017 Jun; 34(6):892-903. PubMed ID: 29036072 [TBL] [Abstract][Full Text] [Related]
6. Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies. Shen L; You Y; Wang Z; Deng X Opt Express; 2015 Jan; 23(2):950-62. PubMed ID: 25835854 [TBL] [Abstract][Full Text] [Related]
7. Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene. Zhou Y; Xu X; Fan H; Ren Z; Bai J; Wang L Phys Chem Chem Phys; 2013 Apr; 15(14):5084-90. PubMed ID: 23450161 [TBL] [Abstract][Full Text] [Related]
8. Dispersion mechanism of surface magnetoplasmons in periodic layered structures. Liu XX; Tsai CF; Chern RL; Tsai DP Appl Opt; 2009 Jun; 48(16):3102-7. PubMed ID: 19488124 [TBL] [Abstract][Full Text] [Related]
9. Determination of the optical Verdet coefficient in semiconductors and insulators. Gabriel CJ; Piller H Appl Opt; 1967 Apr; 6(4):661-7. PubMed ID: 20057821 [TBL] [Abstract][Full Text] [Related]
10. Anomalous Lattice Softening Near a Quantum Critical Point in a Transverse Ising Magnet. Matsuura K; Cong PT; Zherlitsyn S; Wosnitza J; Abe N; Arima TH Phys Rev Lett; 2020 Mar; 124(12):127205. PubMed ID: 32281847 [TBL] [Abstract][Full Text] [Related]
11. Tunable rubidium excited state Voigt atomic optical filter. Yin L; Luo B; Xiong J; Guo H Opt Express; 2016 Mar; 24(6):6088-93. PubMed ID: 27136803 [TBL] [Abstract][Full Text] [Related]
13. Theory of magnetoplasmons in semiconductor superlattices in the Voigt geometry: A Green-function approach. Kushwaha MS; Djafari Rouhani B Phys Rev B Condens Matter; 1991 Apr; 43(11):9021-9032. PubMed ID: 9996570 [No Abstract] [Full Text] [Related]
14. Helicons, magnetoplasma edge, and faraday rotation in solid state plasmas at microwave frequencies. Furdyna JK Appl Opt; 1967 Apr; 6(4):675-84. PubMed ID: 20057824 [TBL] [Abstract][Full Text] [Related]
15. Faraday waves in smectic A liquid crystal layers. Hernández-Contreras M J Phys Condens Matter; 2010 Jan; 22(3):035106. PubMed ID: 21386282 [TBL] [Abstract][Full Text] [Related]
16. Electrically tunable magnetoplasmons in a monolayer of silicene or germanene. Tahir M; Vasilopoulos P J Phys Condens Matter; 2015 Feb; 27(7):075303. PubMed ID: 25639935 [TBL] [Abstract][Full Text] [Related]
17. Semirelativity in semiconductors: a review. Zawadzki W J Phys Condens Matter; 2017 Sep; 29(37):373004. PubMed ID: 28608783 [TBL] [Abstract][Full Text] [Related]
18. Polarization of Magnetoplasmons in Grating Metamaterials Based on CdTe/CdMgTe Quantum Wells. Yavorskiy D; Szoła M; Karpierz K; Rudniewski R; Bożek R; Karczewski G; Wojtowicz T; Wróbel J; Łusakowski J Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32290498 [TBL] [Abstract][Full Text] [Related]
19. Electromagnetic wave transparency of X mode in strongly magnetized plasma. Mandal D; Vashistha A; Das A Sci Rep; 2021 Jul; 11(1):14885. PubMed ID: 34290307 [TBL] [Abstract][Full Text] [Related]