BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34527009)

  • 1. Physiological and Biochemical Response of Wild Olive (
    Tadić J; Dumičić G; Veršić Bratinčević M; Vitko S; Radić Brkanac S
    Front Plant Sci; 2021; 12():712005. PubMed ID: 34527009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can elevated CO(2) improve salt tolerance in olive trees?
    Melgar JC; Syvertsen JP; García-Sánchez F
    J Plant Physiol; 2008 Apr; 165(6):631-40. PubMed ID: 17728014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity.
    Gucci R; Lombardini L; Tattini M
    Tree Physiol; 1997 Jan; 17(1):13-21. PubMed ID: 14759909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Responses of Two Olive Cultivars to Salt Stress.
    Boussadia O; Zgallai H; Mzid N; Zaabar R; Braham M; Doupis G; Koubouris G
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree.
    Ben Ahmed C; Ben Rouina B; Sensoy S; Boukhriss M; Ben Abdullah F
    J Agric Food Chem; 2010 Apr; 58(7):4216-22. PubMed ID: 20210359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive).
    Rossi L; Borghi M; Francini A; Lin X; Xie DY; Sebastiani L
    J Plant Physiol; 2016 Oct; 204():8-15. PubMed ID: 27497740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.
    Pandolfi C; Bazihizina N; Giordano C; Mancuso S; Azzarello E
    Tree Physiol; 2017 Mar; 37(3):380-388. PubMed ID: 28338715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars.
    Petridis A; Therios I; Samouris G; Koundouras S; Giannakoula A
    Plant Physiol Biochem; 2012 Nov; 60():1-11. PubMed ID: 22885895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arbuscular mycorrhizal fungus inocula from coastal sand dunes arrest olive cutting growth under salinity stress.
    Kavroulakis N; Tsiknia M; Ipsilantis I; Kavadia A; Stedel C; Psarras G; Tzerakis C; Doupis G; Karpouzas DG; Papadopoulou KK; Ehaliotis C
    Mycorrhiza; 2020 Jul; 30(4):475-489. PubMed ID: 32519068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses.
    Ben Abdallah M; Trupiano D; Polzella A; De Zio E; Sassi M; Scaloni A; Zarrouk M; Ben Youssef N; Scippa GS
    J Plant Physiol; 2018 Jan; 220():83-95. PubMed ID: 29161576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.).
    Julca I; Marcet-Houben M; Cruz F; Gómez-Garrido J; Gaut BS; Díez CM; Gut IG; Alioto TS; Vargas P; Gabaldón T
    BMC Biol; 2020 Oct; 18(1):148. PubMed ID: 33100219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress in leaves of two olive cultivars under freezing conditions.
    Pfeiffer TŽ; Štolfa I; Žanić M; Pavičić N; Cesar V; Lepeduš H
    Acta Biol Hung; 2013 Sep; 64(3):341-51. PubMed ID: 24013895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genealogical tracing of Olea europaea species and pedigree relationships of var. europaea using chloroplast and nuclear markers.
    Mariotti R; Belaj A; de la Rosa R; Muleo R; Cirilli M; Forgione I; Valeri MC; Mousavi S
    BMC Plant Biol; 2023 Sep; 23(1):452. PubMed ID: 37749509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca.
    Giampetruzzi A; Morelli M; Saponari M; Loconsole G; Chiumenti M; Boscia D; Savino VN; Martelli GP; Saldarelli P
    BMC Genomics; 2016 Jun; 17():475. PubMed ID: 27350531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Status of Biodiversity Assessment and Conservation of Wild Olive (
    Fanelli V; Mascio I; Falek W; Miazzi MM; Montemurro C
    Plants (Basel); 2022 Feb; 11(4):. PubMed ID: 35214813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Differentially Expressed Genes under Salt Stress in Olive.
    Mousavi S; Mariotti R; Valeri MC; Regni L; Lilli E; Albertini E; Proietti P; Businelli D; Baldoni L
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Identification of the Wild Form of Olive (
    Kyriakopoulou CI; Kalogianni DP
    Foods; 2020 Apr; 9(4):. PubMed ID: 32283713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive.
    Ben Ahmed C; Magdich S; Ben Rouina B; Boukhris M; Ben Abdullah F
    J Environ Manage; 2012 Dec; 113():538-44. PubMed ID: 22572465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple linear regression and linear mixed models identify novel traits of salinity tolerance in Olea europaea L.
    Sodini M; Astolfi S; Francini A; Sebastiani L
    Tree Physiol; 2022 May; 42(5):1029-1042. PubMed ID: 35021227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using some growth stimuli, a comparative study of salt tolerance in two tomatoes cultivars and a related wild line with special reference to superoxide dismutases and related micronutrients.
    Faisal Alharby H
    Saudi J Biol Sci; 2021 Nov; 28(11):6133-6144. PubMed ID: 34764745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.