These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34527855)

  • 1. Accuracy and Precision of Alchemical Relative Free Energy Predictions with and without Replica-Exchange.
    Wan S; Tresadern G; Pérez-Benito L; van Vlijmen H; Coveney PV
    Adv Theory Simul; 2020 Jan; 3(1):1900195. PubMed ID: 34527855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does Hamiltonian Replica Exchange via Lambda-Hopping Enhance the Sampling in Alchemical Free Energy Calculations?
    Procacci P
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing Alchemical Free Energy Differences with Hamiltonian Replica Exchange Molecular Dynamics (H-REMD) Simulations.
    Meng Y; Dashti DS; Roitberg AE
    J Chem Theory Comput; 2011 Sep; 7(9):2721-2727. PubMed ID: 22125475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large Scale Study of Ligand-Protein Relative Binding Free Energy Calculations: Actionable Predictions from Statistically Robust Protocols.
    Bhati AP; Coveney PV
    J Chem Theory Comput; 2022 Apr; 18(4):2687-2702. PubMed ID: 35293737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble-Based Replica Exchange Alchemical Free Energy Methods: The Effect of Protein Mutations on Inhibitor Binding.
    Bhati AP; Wan S; Coveney PV
    J Chem Theory Comput; 2019 Feb; 15(2):1265-1277. PubMed ID: 30592603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis.
    Jiang W; Thirman J; Jo S; Roux B
    J Phys Chem B; 2018 Oct; 122(41):9435-9442. PubMed ID: 30253098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Improved Free Energy Perturbation FEP+ Sampling Protocol for Flexible Ligand-Binding Domains.
    Fratev F; Sirimulla S
    Sci Rep; 2019 Nov; 9(1):16829. PubMed ID: 31728038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Free Energy Perturbation Simulations Coupled with Replica-Exchange Molecular Dynamics Study Ligands with Distributed Binding Sites?
    Lockhart C; Luo X; Olson A; Delfing BM; Laracuente XE; Foreman KW; Paige M; Kehn-Hall K; Klimov DK
    J Chem Inf Model; 2023 Aug; 63(15):4791-4802. PubMed ID: 37531558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Drug Discovery through Enhanced Free Energy Calculations.
    Abel R; Wang L; Harder ED; Berne BJ; Friesner RA
    Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of Absolute Hydration and Binding Free Energy with Free Energy Perturbation Distributed Replica-Exchange Molecular Dynamics (FEP/REMD).
    Jiang W; Hodoscek M; Roux B
    J Chem Theory Comput; 2009 Oct; 5(10):2583-2588. PubMed ID: 21857812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying and overcoming the sampling challenges in relative binding free energy calculations of a model protein:protein complex.
    Zhang I; Rufa DA; Pulido I; Henry MM; Rosen LE; Hauser K; Singh S; Chodera JD
    bioRxiv; 2023 Jun; ():. PubMed ID: 36945557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying and Overcoming the Sampling Challenges in Relative Binding Free Energy Calculations of a Model Protein:Protein Complex.
    Zhang I; Rufa DA; Pulido I; Henry MM; Rosen LE; Hauser K; Singh S; Chodera JD
    J Chem Theory Comput; 2023 Aug; 19(15):4863-4882. PubMed ID: 37450482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Local Structural Rearrangements Using FEP/REST: Application to Relative Binding Affinity Predictions of CDK2 Inhibitors.
    Wang L; Deng Y; Knight JL; Wu Y; Kim B; Sherman W; Shelley JC; Lin T; Abel R
    J Chem Theory Comput; 2013 Feb; 9(2):1282-93. PubMed ID: 26588769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.
    Jiang W; Roux B
    J Chem Theory Comput; 2010 Jul; 6(9):2559-2565. PubMed ID: 21857813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Effectiveness of Binding Free Energy Calculations.
    Mondal D; Florian J; Warshel A
    J Phys Chem B; 2019 Oct; 123(42):8910-8915. PubMed ID: 31560539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Re-Balancing Replica Exchange with Solute Tempering for Sampling Dynamic Protein Conformations.
    Zhang Y; Liu X; Chen J
    J Chem Theory Comput; 2023 Mar; 19(5):1602-1614. PubMed ID: 36791464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oversampling Free Energy Perturbation Simulation in Determination of the Ligand-Binding Free Energy.
    Ngo ST; Nguyen TH; Tung NT; Nam PC; Vu KB; Vu VV
    J Comput Chem; 2020 Mar; 41(7):611-618. PubMed ID: 31840845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alchemical Free-Energy Calculations by Multiple-Replica λ-Dynamics: The Conveyor Belt Thermodynamic Integration Scheme.
    Hahn DF; Hünenberger PH
    J Chem Theory Comput; 2019 Apr; 15(4):2392-2419. PubMed ID: 30821973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy and precision of binding free energy prediction for a tacrine related lead inhibitor of acetylcholinesterase with an arsenal of supercomputerized molecular modelling methods: a comparative study.
    Dolezal R
    J Biomol Struct Dyn; 2022; 40(21):11291-11319. PubMed ID: 34323654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.