These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34528150)

  • 1. Effect of Subject-Specific, Spatially Reduced, and Idealized Boundary Conditions on the Predicted Hemodynamic Environment in the Murine Aorta.
    Smith KA; Merchant SS; Hsu EW; Timmins LH
    Ann Biomed Eng; 2021 Dec; 49(12):3255-3266. PubMed ID: 34528150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haemodynamics in the mouse aortic arch computed from MRI-derived velocities at the aortic root.
    Van Doormaal MA; Kazakidi A; Wylezinska M; Hunt A; Tremoleda JL; Protti A; Bohraus Y; Gsell W; Weinberg PD; Ethier CR
    J R Soc Interface; 2012 Nov; 9(76):2834-44. PubMed ID: 22764131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta.
    Morbiducci U; Ponzini R; Gallo D; Bignardi C; Rizzo G
    J Biomech; 2013 Jan; 46(1):102-9. PubMed ID: 23159094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis.
    Boccadifuoco A; Mariotti A; Capellini K; Celi S; Salvetti MV
    Cardiovasc Eng Technol; 2018 Dec; 9(4):688-706. PubMed ID: 30357714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation.
    Wake AK; Oshinski JN; Tannenbaum AR; Giddens DP
    J Biomech Eng; 2009 Feb; 131(2):021013. PubMed ID: 19102572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics.
    Pirola S; Cheng Z; Jarral OA; O'Regan DP; Pepper JR; Athanasiou T; Xu XY
    J Biomech; 2017 Jul; 60():15-21. PubMed ID: 28673664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Patient-Specific Inflow Velocity Profile on Hemodynamics of the Thoracic Aorta.
    Youssefi P; Gomez A; Arthurs C; Sharma R; Jahangiri M; Alberto Figueroa C
    J Biomech Eng; 2018 Jan; 140(1):. PubMed ID: 28890987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of pulsatile flowfield in healthy thoracic aorta models.
    Wen CY; Yang AS; Tseng LY; Chai JW
    Ann Biomed Eng; 2010 Feb; 38(2):391-402. PubMed ID: 19890715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population.
    Callaghan FM; Grieve SM
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1174-H1181. PubMed ID: 30028202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch.
    Winter P; Andelovic K; Kampf T; Hansmann J; Jakob PM; Bauer WR; Zernecke A; Herold V
    J Cardiovasc Magn Reson; 2021 Mar; 23(1):34. PubMed ID: 33731147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of numerical simulation methods in aortic arch using 4D Flow MRI.
    Miyazaki S; Itatani K; Furusawa T; Nishino T; Sugiyama M; Takehara Y; Yasukochi S
    Heart Vessels; 2017 Aug; 32(8):1032-1044. PubMed ID: 28444501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aortic arch morphogenesis and flow modeling in the chick embryo.
    Wang Y; Dur O; Patrick MJ; Tinney JP; Tobita K; Keller BB; Pekkan K
    Ann Biomed Eng; 2009 Jun; 37(6):1069-81. PubMed ID: 19337838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven generation of 4D velocity profiles in the aneurysmal ascending aorta.
    Saitta S; Maga L; Armour C; Votta E; O'Regan DP; Salmasi MY; Athanasiou T; Weinsaft JW; Xu XY; Pirola S; Redaelli A
    Comput Methods Programs Biomed; 2023 May; 233():107468. PubMed ID: 36921465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow.
    Gallo D; De Santis G; Negri F; Tresoldi D; Ponzini R; Massai D; Deriu MA; Segers P; Verhegghe B; Rizzo G; Morbiducci U
    Ann Biomed Eng; 2012 Mar; 40(3):729-41. PubMed ID: 22009313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta.
    Bozzi S; Morbiducci U; Gallo D; Ponzini R; Rizzo G; Bignardi C; Passoni G
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1104-1112. PubMed ID: 28553722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Hemodynamics in Great Arteries of Wild-Type Mouse Using Computational Fluid Dynamics Based on Ultrasound Images.
    Chen Z; Zhou Y; Ma Y; Wang J; He Y; Li Z
    Ultrasound Q; 2016 Mar; 32(1):51-7. PubMed ID: 26938034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling.
    Chandra S; Raut SS; Jana A; Biederman RW; Doyle M; Muluk SC; Finol EA
    J Biomech Eng; 2013 Aug; 135(8):81001. PubMed ID: 23719760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas.
    Perinajová R; Juffermans JF; Westenberg JJM; van der Palen RLF; van den Boogaard PJ; Lamb HJ; Kenjereš S
    Comput Biol Med; 2021 Jun; 133():104385. PubMed ID: 33894502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.