These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34528378)

  • 1. Why fibrin biomechanical properties matter for hemostasis and thrombosis.
    Feller T; Connell SDA; Ariёns RAS
    J Thromb Haemost; 2022 Jan; 20(1):6-16. PubMed ID: 34528378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced lysis and accelerated establishment of viscoelastic properties of fibrin clots are associated with pulmonary embolism.
    Martinez MR; Cuker A; Mills AM; Crichlow A; Lightfoot RT; Chernysh IN; Nagaswami C; Weisel JW; Ischiropoulos H
    Am J Physiol Lung Cell Mol Physiol; 2014 Mar; 306(5):L397-404. PubMed ID: 24414255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrin mechanical properties and their structural origins.
    Litvinov RI; Weisel JW
    Matrix Biol; 2017 Jul; 60-61():110-123. PubMed ID: 27553509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The elasticity of an individual fibrin fiber in a clot.
    Collet JP; Shuman H; Ledger RE; Lee S; Weisel JW
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9133-7. PubMed ID: 15967976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.
    Piechocka IK; Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2017 May; 15(5):938-949. PubMed ID: 28166607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrinogen and Fibrin.
    Litvinov RI; Pieters M; de Lange-Loots Z; Weisel JW
    Subcell Biochem; 2021; 96():471-501. PubMed ID: 33252741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
    Houser JR; Hudson NE; Ping L; O'Brien ET; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Nov; 99(9):3038-47. PubMed ID: 21044602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory element in fibrin triggers tension-activated transition from catch to slip bonds.
    Litvinov RI; Kononova O; Zhmurov A; Marx KA; Barsegov V; Thirumalai D; Weisel JW
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8575-8580. PubMed ID: 30087181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compaction of fibrin clots reveals the antifibrinolytic effect of factor XIII.
    Rijken DC; Abdul S; Malfliet JJ; Leebeek FW; Uitte de Willige S
    J Thromb Haemost; 2016 Jul; 14(7):1453-61. PubMed ID: 27148673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay of fibrinogen α
    Martinez-Torres C; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2024 Mar; 22(3):715-726. PubMed ID: 37940047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin protofibril packing and clot stability are enhanced by extended knob-hole interactions and catch-slip bonds.
    Asquith NL; Duval C; Zhmurov A; Baker SR; McPherson HR; Domingues MM; Connell SDA; Barsegov V; Ariëns RAS
    Blood Adv; 2022 Jul; 6(13):4015-4027. PubMed ID: 35561308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel mechanisms that regulate clot structure/function.
    Ariëns RA
    Thromb Res; 2016 May; 141 Suppl 2():S25-7. PubMed ID: 27207417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of fibrin clot elasticity.
    Lim BB; Lee EH; Sotomayor M; Schulten K
    Structure; 2008 Mar; 16(3):449-59. PubMed ID: 18294856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves.
    Maksudov F; Daraei A; Sesha A; Marx KA; Guthold M; Barsegov V
    Acta Biomater; 2021 Dec; 136():327-342. PubMed ID: 34606991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical origins of inherent tension in fibrin networks.
    Spiewak R; Gosselin A; Merinov D; Litvinov RI; Weisel JW; Tutwiler V; Purohit PK
    J Mech Behav Biomed Mater; 2022 Sep; 133():105328. PubMed ID: 35803206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in computational modeling of fibrin clot formation: A review.
    Yesudasan S; Averett RD
    Comput Biol Chem; 2019 Dec; 83():107148. PubMed ID: 31751883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrin fibers have extraordinary extensibility and elasticity.
    Liu W; Jawerth LM; Sparks EA; Falvo MR; Hantgan RR; Superfine R; Lord ST; Guthold M
    Science; 2006 Aug; 313(5787):634. PubMed ID: 16888133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical Mechanisms Mediating Fibrin Fiber Lysis.
    Hudson NE
    Biomed Res Int; 2017; 2017():2748340. PubMed ID: 28630861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-scale strain-stiffening of semiflexible bundle networks.
    Piechocka IK; Jansen KA; Broedersz CP; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2016 Feb; 12(7):2145-56. PubMed ID: 26761718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.