These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34528973)

  • 1. NIR emissive light-harvesting systems through perovskite passivation and sequential energy transfer for third-level fingerprint imaging.
    Zhong K; Lu S; Guo W; Su J; Sun S; Hai J; Wang B
    Chem Commun (Camb); 2021 Sep; 57(74):9434-9437. PubMed ID: 34528973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CH
    Muthu C; Vijayan A; Nair VC
    Chem Asian J; 2017 May; 12(9):988-995. PubMed ID: 28301082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Efficient Near-Infrared Emissive Artificial Supramolecular Light-Harvesting System for Imaging in the Golgi Apparatus.
    Chen XM; Cao Q; Bisoyi HK; Wang M; Yang H; Li Q
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10493-10497. PubMed ID: 32196893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Supramolecular Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Photochemical Catalysis.
    Hao M; Sun G; Zuo M; Xu Z; Chen Y; Hu XY; Wang L
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):10095-10100. PubMed ID: 31625651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organo metal halide perovskites effectively photosensitize the production of singlet oxygen (
    Zhang XF; Xu B
    Chem Commun (Camb); 2019 Oct; 55(87):13100-13103. PubMed ID: 31612179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Strategy of Constructing Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Efficient Photocatalysis in Water.
    Wang Y; Han N; Li XL; Wang RZ; Xing LB
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45734-45741. PubMed ID: 36166320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen-deficient perovskites: linking structure, energetics and ion transport.
    Stølen S; Bakken E; Mohn CE
    Phys Chem Chem Phys; 2006 Jan; 8(4):429-47. PubMed ID: 16482285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient Artificial Light-Harvesting Systems Constructed in Aqueous Solution Based on Supramolecular Self-Assembly.
    Guo S; Song Y; He Y; Hu XY; Wang L
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3163-3167. PubMed ID: 29383817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular Sequential Light-Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging.
    Zhang Q; Cui F; Dang X; Wang Q; Li ZY; Sun XQ; Xiao T
    Chemistry; 2024 Jul; 30(41):e202401426. PubMed ID: 38757380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photon harvesting by excimer-forming multichromophores.
    Adeyemi OO; Malinovskii VL; Biner SM; Calzaferri G; Häner R
    Chem Commun (Camb); 2012 Oct; 48(77):9589-91. PubMed ID: 22908095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared fluorescence imaging using organic dye nanoparticles.
    Yu J; Zhang X; Hao X; Zhang X; Zhou M; Lee CS; Chen X
    Biomaterials; 2014 Mar; 35(10):3356-64. PubMed ID: 24461324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3 ).
    Song J; Li J; Li X; Xu L; Dong Y; Zeng H
    Adv Mater; 2015 Nov; 27(44):7162-7. PubMed ID: 26444873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared fluorescent dye-doped semiconducting polymer dots.
    Jin Y; Ye F; Zeigler M; Wu C; Chiu DT
    ACS Nano; 2011 Feb; 5(2):1468-75. PubMed ID: 21280613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjugated Polymer-Based Hybrid Nanoparticles with Two-Photon Excitation and Near-Infrared Emission Features for Fluorescence Bioimaging within the Biological Window.
    Lv Y; Liu P; Ding H; Wu Y; Yan Y; Liu H; Wang X; Huang F; Zhao Y; Tian Z
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20640-8. PubMed ID: 26340609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared-Absorbing and Dopant-Free Heterocyclic Quinoid-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells.
    Ni JS; Hsieh HC; Chen CA; Wen YS; Wu WT; Shih YC; Lin KF; Wang L; Lin JT
    ChemSusChem; 2016 Nov; 9(22):3139-3144. PubMed ID: 27791344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bionic Detectors Based on Low-Bandgap Inorganic Perovskite for Selective NIR-I Photon Detection and Imaging.
    Cao F; Chen J; Yu D; Wang S; Xu X; Liu J; Han Z; Huang B; Gu Y; Choy KL; Zeng H
    Adv Mater; 2020 Feb; 32(6):e1905362. PubMed ID: 31858634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 6.5% efficient perovskite quantum-dot-sensitized solar cell.
    Im JH; Lee CR; Lee JW; Park SW; Park NG
    Nanoscale; 2011 Oct; 3(10):4088-93. PubMed ID: 21897986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRET-capable supramolecular polymers based on a BODIPY-bridged pillar[5]arene dimer with BODIPY guests for mimicking the light-harvesting system of natural photosynthesis.
    Meng LB; Li D; Xiong S; Hu XY; Wang L; Li G
    Chem Commun (Camb); 2015 Mar; 51(22):4643-6. PubMed ID: 25690934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. White Light-Emitting Devices Based on Inorganic Perovskite and Organic Materials.
    Chen S; Chen C; Bao C; Mujahid M; Li Y; Chen P; Duan Y
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30813341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilicity-Controlled Polychromatic Emissive Supramolecular Self-Assemblies for Highly Sensitive and Efficient Artificial Light-Harvesting Systems.
    Chen XM; Cao KW; Bisoyi HK; Zhang S; Qian N; Guo L; Guo DS; Yang H; Li Q
    Small; 2022 Oct; 18(42):e2204360. PubMed ID: 36135778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.