These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34528974)

  • 21. Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions.
    Yin D; Han C; Bo X; Liu J; Guo L
    J Colloid Interface Sci; 2019 Jan; 533():578-587. PubMed ID: 30189329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controllable synthesis of nitrogen-doped carbon containing Co and Co
    Luo X; Ma H; Ren H; Zou X; Wang Y; Li X; Shen Z; Wang Y; Cui L
    J Colloid Interface Sci; 2021 May; 590():622-631. PubMed ID: 33582364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soybean straw biomass-derived Fe-N co-doped porous carbon as an efficient electrocatalyst for oxygen reduction in both alkaline and acidic media.
    Liu Y; Su M; Li D; Li S; Li X; Zhao J; Liu F
    RSC Adv; 2020 Feb; 10(12):6763-6771. PubMed ID: 35493871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Well-dispersed Co
    Wen GL; Niu HJ; Feng JJ; Luo X; Weng X; Wang AJ
    J Colloid Interface Sci; 2020 Jun; 569():277-285. PubMed ID: 32114106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A nitrogen and fluorine enriched Fe/Fe
    Karuppannan M; Park JE; Bae HE; Cho YH; Kwon OJ
    Nanoscale; 2020 Jan; 12(4):2542-2554. PubMed ID: 31932838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Modification of Multi-Walled Carbon Nanotubes via Hemoglobin-Derived Iron and Nitrogen-Rich Carbon Nanolayers for the Electrocatalysis of Oxygen Reduction.
    Li W; Sun L; Hu R; Liao W; Li Z; Li Y; Guo C
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cobalt-nitrogen complex on N-doped three-dimensional graphene framework as a highly efficient electrocatalyst for oxygen reduction reaction.
    Jiang Y; Lu Y; Wang X; Bao Y; Chen W; Niu L
    Nanoscale; 2014 Dec; 6(24):15066-72. PubMed ID: 25366880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excavated Fe-N-C sites for enhanced electrocatalytic activity in the oxygen reduction reaction.
    Jeong B; Shin D; Jeon H; Ocon JD; Mun BS; Baik J; Shin HJ; Lee J
    ChemSusChem; 2014 May; 7(5):1289-94. PubMed ID: 24700786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.
    Sanetuntikul J; Shanmugam S
    Nanoscale; 2015 May; 7(17):7644-50. PubMed ID: 25833146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction.
    Zhou D; Yang L; Yu L; Kong J; Yao X; Liu W; Xu Z; Lu X
    Nanoscale; 2015 Jan; 7(4):1501-9. PubMed ID: 25500995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mesoporous Hollow Nitrogen-Doped Carbon Nanospheres with Embedded MnFe
    Wu X; Niu Y; Feng B; Yu Y; Huang X; Zhong C; Hu W; Li CM
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20440-20447. PubMed ID: 29845856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zinc-Mediated Template Synthesis of Fe-N-C Electrocatalysts with Densely Accessible Fe-N
    Chen G; Liu P; Liao Z; Sun F; He Y; Zhong H; Zhang T; Zschech E; Chen M; Wu G; Zhang J; Feng X
    Adv Mater; 2020 Feb; 32(8):e1907399. PubMed ID: 31944436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fe-doped mayenite electride composite with 2D reduced Graphene Oxide: As a non-platinum based, highly durable electrocatalyst for Oxygen Reduction Reaction.
    Khan K; Tareen AK; Aslam M; Ali Khan S; Khan Q; Khan QU; Saeed M; Siddique Saleemi A; Kiani M; Ouyang Z; Zhang H; Guo Z
    Sci Rep; 2019 Dec; 9(1):19809. PubMed ID: 31874955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchically porous Fe,N-doped carbon nanorods derived from 1D Fe-doped MOFs as highly efficient oxygen reduction electrocatalysts in both alkaline and acidic media.
    Li H; Chen X; Chen J; Shen K; Li Y
    Nanoscale; 2021 Jun; 13(23):10500-10508. PubMed ID: 34085689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction.
    Xu J; Lu S; Chen X; Wang J; Zhang B; Zhang X; Xiao C; Ding S
    Nanotechnology; 2017 Dec; 28(48):485701. PubMed ID: 29039353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron Sulfide Nanoparticles Embedded Into a Nitrogen and Sulfur Co-doped Carbon Sphere as a Highly Active Oxygen Reduction Electrocatalyst.
    Wang H; Qiu X; Wang W; Jiang L; Liu H
    Front Chem; 2019; 7():855. PubMed ID: 31921777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasound-assisted transformation from waste biomass to efficient carbon-based metal-free pH-universal oxygen reduction reaction electrocatalysts.
    Wang H; Zhang W; Bai P; Xu L
    Ultrason Sonochem; 2020 Jul; 65():105048. PubMed ID: 32203918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal-Organic-Framework-Derived Co-Fe Bimetallic Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells.
    Xiong Y; Yang Y; DiSalvo FJ; Abruña HD
    J Am Chem Soc; 2019 Jul; 141(27):10744-10750. PubMed ID: 31246446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimized Enhancement Effect of Sulfur in Fe-N-S Codoped Carbon Nanosheets for Efficient Oxygen Reduction Reaction.
    Ni B; Chen R; Wu L; Xu X; Shi C; Sun P; Chen T
    ACS Appl Mater Interfaces; 2020 May; 12(21):23995-24006. PubMed ID: 32329603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scalable synthesis of Fe
    Xue N; Liu J; Wang P; Wang C; Li S; Zhu H; Yin J
    J Colloid Interface Sci; 2020 Nov; 580():460-469. PubMed ID: 32711197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.