These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34528978)

  • 1. Design of phase-transition molecular solar thermal energy storage compounds: compact molecules with high energy densities.
    Qiu Q; Gerkman MA; Shi Y; Han GGD
    Chem Commun (Camb); 2021 Sep; 57(74):9458-9461. PubMed ID: 34528978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photon Energy Storage in Strained Cyclic Hydrazones: Emerging Molecular Solar Thermal Energy Storage Compounds.
    Qiu Q; Yang S; Gerkman MA; Fu H; Aprahamian I; Han GGD
    J Am Chem Soc; 2022 Jul; 144(28):12627-12631. PubMed ID: 35801820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design.
    Zhang L; Liu H; Du Q; Zhang G; Zhu S; Wu Z; Luo X
    Small; 2023 Mar; 19(10):e2206623. PubMed ID: 36534833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.
    Cho EN; Zhitomirsky D; Han GG; Liu Y; Grossman JC
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8679-8687. PubMed ID: 28234453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azobenzene-Based Solar Thermal Fuels: A Review.
    Zhang B; Feng Y; Feng W
    Nanomicro Lett; 2022 Jun; 14(1):138. PubMed ID: 35767090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azobenzene-based solar thermal fuels: design, properties, and applications.
    Dong L; Feng Y; Wang L; Feng W
    Chem Soc Rev; 2018 Oct; 47(19):7339-7368. PubMed ID: 30168543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers.
    Wu S; Butt HJ
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900413. PubMed ID: 31737964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.
    Quant M; Lennartson A; Dreos A; Kuisma M; Erhart P; Börjesson K; Moth-Poulsen K
    Chemistry; 2016 Sep; 22(37):13265-74. PubMed ID: 27492997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochromic Dendrimers for Photoswitched Solid-To-Liquid Transitions and Solar Thermal Fuels.
    Xu X; Zhang P; Wu B; Xing Y; Shi K; Fang W; Yu H; Wang G
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50135-50142. PubMed ID: 33085470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid and Photoliquefiable Azobenzene Derivatives for Solvent-free Molecular Solar Thermal Fuels.
    Yang Y; Huang S; Ma Y; Yi J; Jiang Y; Chang X; Li Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35623-35634. PubMed ID: 35916069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.
    Kuisma M; Lundin A; Moth-Poulsen K; Hyldgaard P; Erhart P
    ChemSusChem; 2016 Jul; 9(14):1786-94. PubMed ID: 27254282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformal Electroplating of Azobenzene-Based Solar Thermal Fuels onto Large-Area and Fiber Geometries.
    Zhitomirsky D; Grossman JC
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26319-26325. PubMed ID: 27611884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times.
    Mansø M; Petersen AU; Wang Z; Erhart P; Nielsen MB; Moth-Poulsen K
    Nat Commun; 2018 May; 9(1):1945. PubMed ID: 29769524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage.
    Xiong F; Yuan K; Aftab W; Jiang H; Shi J; Liang Z; Gao S; Zhong R; Wang H; Zou R
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1377-1385. PubMed ID: 33351579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.
    Durgun E; Grossman JC
    J Phys Chem Lett; 2013 Mar; 4(6):854-60. PubMed ID: 26291346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.
    Kolpak AM; Grossman JC
    Nano Lett; 2011 Aug; 11(8):3156-62. PubMed ID: 21688811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Responsive Solid-Solid Phase Change Materials for Photon and Thermal Energy Storage.
    Li X; Cho S; Han GGD
    ACS Mater Au; 2023 Jan; 3(1):37-42. PubMed ID: 36647455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications.
    Orrego-Hernández J; Dreos A; Moth-Poulsen K
    Acc Chem Res; 2020 Aug; 53(8):1478-1487. PubMed ID: 32662627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoliquefiable ionic crystals: a phase crossover approach for photon energy storage materials with functional multiplicity.
    Ishiba K; Morikawa MA; Chikara C; Yamada T; Iwase K; Kawakita M; Kimizuka N
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1532-6. PubMed ID: 25483773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coexistence of Magnetic-Optic-Electric Triple Switching and Thermal Energy Storage in a Multifunctional Plastic Crystal of Trimethylchloromethyl Ammonium Tetrachloroferrate(III).
    Li D; Zhao XM; Zhao HX; Long LS; Zheng LS
    Inorg Chem; 2019 Jan; 58(1):655-662. PubMed ID: 30576116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.