These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 34529170)
1. RDDSVM: accurate prediction of A-to-I RNA editing sites from sequence using support vector machines. Tac HA; Koroglu M; Sezerman U Funct Integr Genomics; 2021 Nov; 21(5-6):633-643. PubMed ID: 34529170 [TBL] [Abstract][Full Text] [Related]
2. Biochemical and Transcriptome-Wide Identification of A-to-I RNA Editing Sites by ICE-Seq. Okada S; Sakurai M; Ueda H; Suzuki T Methods Enzymol; 2015; 560():331-53. PubMed ID: 26253977 [TBL] [Abstract][Full Text] [Related]
3. Discovering A-to-I RNA Editing Through Chemical Methodology "ICE-seq". Sakurai M; Okada S; Ueda H; Yang Y Methods Mol Biol; 2021; 2181():113-148. PubMed ID: 32729078 [TBL] [Abstract][Full Text] [Related]
5. EPAI-NC: Enhanced prediction of adenosine to inosine RNA editing sites using nucleotide compositions. Ahmad A; Shatabda S Anal Biochem; 2019 Mar; 569():16-21. PubMed ID: 30664849 [TBL] [Abstract][Full Text] [Related]
6. Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences. Zhu S; Xiang JF; Chen T; Chen LL; Yang L BMC Genomics; 2013 Mar; 14():206. PubMed ID: 23537002 [TBL] [Abstract][Full Text] [Related]
7. iPReditor-CMG: Improving a predictive RNA editor for crop mitochondrial genomes using genomic sequence features and an optimal support vector machine. Qin S; Fan Y; Hu S; Wang Y; Wang Z; Cao Y; Liu Q; Tan S; Dai Z; Zhou W Phytochemistry; 2022 Aug; 200():113222. PubMed ID: 35561852 [TBL] [Abstract][Full Text] [Related]
8. Large-scale prediction of ADAR-mediated effective human A-to-I RNA editing. Yao L; Wang H; Song Y; Dai Z; Yu H; Yin M; Wang D; Yang X; Wang J; Wang T; Cao N; Zhu J; Shen X; Song G; Zhao Y Brief Bioinform; 2019 Jan; 20(1):102-109. PubMed ID: 28968662 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide identification and analysis of A-to-I RNA editing events in bovine by transcriptome sequencing. Bakhtiarizadeh MR; Salehi A; Rivera RM PLoS One; 2018; 13(2):e0193316. PubMed ID: 29470549 [TBL] [Abstract][Full Text] [Related]
10. RDDpred: a condition-specific RNA-editing prediction model from RNA-seq data. Kim MS; Hur B; Kim S BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):5. PubMed ID: 26817607 [TBL] [Abstract][Full Text] [Related]
12. Accurate identification of RNA editing sites from primitive sequence with deep neural networks. Ouyang Z; Liu F; Zhao C; Ren C; An G; Mei C; Bo X; Shu W Sci Rep; 2018 Apr; 8(1):6005. PubMed ID: 29662087 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage. Cattenoz PB; Taft RJ; Westhof E; Mattick JS RNA; 2013 Feb; 19(2):257-70. PubMed ID: 23264566 [TBL] [Abstract][Full Text] [Related]
14. EndoVIPER-seq for Improved Detection of A-to-I Editing Sites in Cellular RNA. Knutson SD; Heemstra JM Curr Protoc Chem Biol; 2020 Jun; 12(2):e82. PubMed ID: 32469473 [TBL] [Abstract][Full Text] [Related]
15. Large-scale detection and analysis of adenosine-to-inosine RNA editing during development in Plutella xylostella. He T; Lei W; Ge C; Du P; Wang L; Li F Mol Genet Genomics; 2015 Jun; 290(3):929-37. PubMed ID: 25492222 [TBL] [Abstract][Full Text] [Related]
16. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Sakurai M; Yano T; Kawabata H; Ueda H; Suzuki T Nat Chem Biol; 2010 Oct; 6(10):733-40. PubMed ID: 20835228 [TBL] [Abstract][Full Text] [Related]
17. Identification of widespread ultra-edited human RNAs. Carmi S; Borukhov I; Levanon EY PLoS Genet; 2011 Oct; 7(10):e1002317. PubMed ID: 22028664 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome-wide identification of adenosine-to-inosine editing using the ICE-seq method. Suzuki T; Ueda H; Okada S; Sakurai M Nat Protoc; 2015 May; 10(5):715-32. PubMed ID: 25855956 [TBL] [Abstract][Full Text] [Related]