These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34529398)

  • 1. Cell-Free Biosynthesis System: Methodology and Perspective of in Vitro Efficient Platform for Pyruvate Biosynthesis and Transformation.
    Tang S; Liao D; Li X; Lin Y; Han S; Zheng S
    ACS Synth Biol; 2021 Oct; 10(10):2417-2433. PubMed ID: 34529398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude
    Mohr B; Giannone RJ; Hettich RL; Doktycz MJ
    ACS Synth Biol; 2020 Nov; 9(11):2986-2997. PubMed ID: 33044063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Free Synthetic Biology for Pathway Prototyping.
    Karim AS; Jewett MC
    Methods Enzymol; 2018; 608():31-57. PubMed ID: 30173768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Free Protein Synthesis for High-Throughput Biosynthetic Pathway Prototyping.
    Rasor BJ; Vögeli B; Jewett MC; Karim AS
    Methods Mol Biol; 2022; 2433():199-215. PubMed ID: 34985746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.
    Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y
    Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning applications in systems metabolic engineering.
    Kim GB; Kim WJ; Kim HU; Lee SY
    Curr Opin Biotechnol; 2020 Aug; 64():1-9. PubMed ID: 31580992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redirection of pyruvate flux toward desired metabolic pathways through substrate channeling between pyruvate kinase and pyruvate-converting enzymes in Saccharomyces cerevisiae.
    Kim S; Bae SJ; Hahn JS
    Sci Rep; 2016 Apr; 6():24145. PubMed ID: 27052099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).
    Merrick CA; Wardrope C; Paget JE; Colloms SD; Rosser SJ
    Methods Enzymol; 2016; 575():285-317. PubMed ID: 27417934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of an in vitro bypassed pyruvate decarboxylation pathway using thermostable enzyme modules and its application to N-acetylglutamate production.
    Krutsakorn B; Imagawa T; Honda K; Okano K; Ohtake H
    Microb Cell Fact; 2013 Oct; 12():91. PubMed ID: 24099461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design.
    Karim AS; Dudley QM; Juminaga A; Yuan Y; Crowe SA; Heggestad JT; Garg S; Abdalla T; Grubbe WS; Rasor BJ; Coar DN; Torculas M; Krein M; Liew FE; Quattlebaum A; Jensen RO; Stuart JA; Simpson SD; Köpke M; Jewett MC
    Nat Chem Biol; 2020 Aug; 16(8):912-919. PubMed ID: 32541965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.
    Tan GY; Liu T
    Metab Eng; 2017 Jan; 39():228-236. PubMed ID: 28013086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.
    Zhou Y; Li G; Dong J; Xing XH; Dai J; Zhang C
    Metab Eng; 2018 May; 47():294-302. PubMed ID: 29627507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Rhizopus oryzae for the production of platform chemicals.
    Meussen BJ; de Graaff LH; Sanders JP; Weusthuis RA
    Appl Microbiol Biotechnol; 2012 May; 94(4):875-86. PubMed ID: 22526790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks.
    Morgado G; Gerngross D; Roberts TM; Panke S
    Adv Biochem Eng Biotechnol; 2018; 162():117-146. PubMed ID: 27757475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Progress in metabolic engineering of biosynthesis of 3-hydroxypropionic acid].
    Zhan Y; Zhao R; Cui H; Li H; Song Z; Liu C
    Sheng Wu Gong Cheng Xue Bao; 2020 Jun; 36(6):1101-1112. PubMed ID: 32597060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Progress in studies on production of chemicals from xylose by Saccharomyces cerevisiae].
    Wang M; Luan T; Zhao J; Li H; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):1042-1057. PubMed ID: 33783167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.