These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34529416)

  • 1. Enhanced Polyester Degradation through Transesterification with Salicylates.
    Kim HJ; Hillmyer MA; Ellison CJ
    J Am Chem Soc; 2021 Sep; 143(38):15784-15790. PubMed ID: 34529416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Readily Degradable Aromatic Polyesters from Salicylic Acid.
    Kim HJ; Reddi Y; Cramer CJ; Hillmyer MA; Ellison CJ
    ACS Macro Lett; 2020 Jan; 9(1):96-102. PubMed ID: 35638662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of So-Called Biodegradable Polymers in Seawater and Freshwater.
    Bagheri AR; Laforsch C; Greiner A; Agarwal S
    Glob Chall; 2017 Jul; 1(4):1700048. PubMed ID: 31565274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Versatile Step-Growth Polymerization Route to Functional Polyesters from an Activated Diester Monomer.
    Biswas S; Das A
    Chemistry; 2023 Mar; 29(16):e202203849. PubMed ID: 36511092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aliphatic polyester block polymers: renewable, degradable, and sustainable.
    Hillmyer MA; Tolman WB
    Acc Chem Res; 2014 Aug; 47(8):2390-6. PubMed ID: 24852135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of salicylate-based poly(anhydride-esters) formed via melt-condensation versus solution polymerization.
    Schmeltzer RC; Johnson M; Griffin J; Uhrich K
    J Biomater Sci Polym Ed; 2008; 19(10):1295-306. PubMed ID: 18854123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-triggered, degradable and high strength-toughness copolyesters: Comprehensive experimental and theoretical study.
    Tian Y; Li J; Hu H; Chen C; Li F; Ying WB; Zheng L; Zhao YL; Wang J; Zhang R; Zhu J
    J Hazard Mater; 2022 May; 430():128392. PubMed ID: 35152100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast degrading odd-odd aliphatic polyester-5,7 made by condensation polymerization for biomedical applications.
    Chen F; Nölle JM; Wietzke S; Reuter M; Chatterjee S; Koch M; Agarwal S
    J Biomater Sci Polym Ed; 2012; 23(12):1539-51. PubMed ID: 21801477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolytically degradable hyperbranched PEG-polyester adhesive with low swelling and robust mechanical properties.
    Zhang H; Zhao T; Duffy P; Dong Y; Annaidh AN; O'Cearbhaill E; Wang W
    Adv Healthc Mater; 2015 Oct; 4(15):2260-8. PubMed ID: 26346527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (Bio)degradable polymeric materials for a sustainable future - part 1. Organic recycling of PLA/PBAT blends in the form of prototype packages with long shelf-life.
    Musioł M; Sikorska W; Janeczek H; Wałach W; Hercog A; Johnston B; Rydz J
    Waste Manag; 2018 Jul; 77():447-454. PubMed ID: 29699727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environment-friendly transesterification to seawater-degradable polymers expanded: Computational construction guide to breaking points.
    Pokora M; Rheinberger T; Wurm FR; Paneth A; Paneth P
    Chemosphere; 2022 Dec; 308(Pt 2):136381. PubMed ID: 36088968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced degradation of poly(ethylene terephthalate) by the addition of lactic acid / glycolic acid: composting degradation, seawater degradation behavior and comparison of degradation mechanism.
    Liu TY; Xu PY; Dan Huang ; Lu B; Zhen ZC; Zheng WZ; Dong YC; Li X; Wang GX; Ji JH
    J Hazard Mater; 2023 Mar; 446():130670. PubMed ID: 36580787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aliphatic Polyester-Based Biodegradable Microbeads for Sustainable Cosmetics.
    Nam HC; Park WH
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2440-2449. PubMed ID: 33455355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Printed PLA and PLA/PHA Dumbbell-Shaped Specimens: Material Defects and Their Impact on Degradation Behavior.
    Rydz J; Włodarczyk J; Gonzalez Ausejo J; Musioł M; Sikorska W; Sobota M; Hercog A; Duale K; Janeczek H
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Topology-Defined Polyester Elastomer from CO
    Chen K; Zhu Z; Bai T; Mei Y; Shen T; Ling J; Ni X
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202213028. PubMed ID: 36152298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers.
    Oliaei E; Olsén P; Lindström T; Berglund LA
    Nat Commun; 2022 Sep; 13(1):5666. PubMed ID: 36167843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and hydrolytic degradation of poly(hexylene terephthalate-co-lactide) co-polyesters from melting polycondensation.
    Su J; Chen Y; Tan L
    J Biomater Sci Polym Ed; 2009; 20(1):99-114. PubMed ID: 19105903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seawater-Degradable Polymers-Fighting the Marine Plastic Pollution.
    Wang GX; Huang D; Ji JH; Völker C; Wurm FR
    Adv Sci (Weinh); 2020 Jan; 8(1):2001121. PubMed ID: 33437568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility.
    Zumstein MT; Rechsteiner D; Roduner N; Perz V; Ribitsch D; Guebitz GM; Kohler HE; McNeill K; Sander M
    Environ Sci Technol; 2017 Jul; 51(13):7476-7485. PubMed ID: 28538100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-Degradable Polyesters with Rigid Cyclic Diester from Camphor and Tartaric Acid.
    Kang JH; Sim SJ; Lee JH; Lee S; Suh DH
    J Polym Environ; 2022; 30(8):3463-3473. PubMed ID: 35469316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.