BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 34529665)

  • 1. Dynamic modelling of the PI3K/MTOR signalling network uncovers biphasic dependence of mTORC1 activity on the mTORC2 subunit SIN1.
    Ghomlaghi M; Yang G; Shin SY; James DE; Nguyen LK
    PLoS Comput Biol; 2021 Sep; 17(9):e1008513. PubMed ID: 34529665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling.
    Wang B; Jie Z; Joo D; Ordureau A; Liu P; Gan W; Guo J; Zhang J; North BJ; Dai X; Cheng X; Bian X; Zhang L; Harper JW; Sun SC; Wei W
    Nature; 2017 May; 545(7654):365-369. PubMed ID: 28489822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of the Scaffolding Function of mLST8 Selectively Inhibits mTORC2 Assembly and Function and Suppresses mTORC2-Dependent Tumor Growth
    Hwang Y; Kim LC; Song W; Edwards DN; Cook RS; Chen J
    Cancer Res; 2019 Jul; 79(13):3178-3184. PubMed ID: 31085701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects.
    Jhanwar-Uniyal M; Amin AG; Cooper JB; Das K; Schmidt MH; Murali R
    Adv Biol Regul; 2017 May; 64():39-48. PubMed ID: 28189457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress.
    Ozturk DG; Kocak M; Akcay A; Kinoglu K; Kara E; Buyuk Y; Kazan H; Gozuacik D
    Autophagy; 2019 Mar; 15(3):375-390. PubMed ID: 30290719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship.
    Jhanwar-Uniyal M; Wainwright JV; Mohan AL; Tobias ME; Murali R; Gandhi CD; Schmidt MH
    Adv Biol Regul; 2019 May; 72():51-62. PubMed ID: 31010692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma.
    Jhanwar-Uniyal M; Dominguez JF; Mohan AL; Tobias ME; Gandhi CD
    Adv Biol Regul; 2022 Jan; 83():100854. PubMed ID: 34996736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RES-529: a PI3K/AKT/mTOR pathway inhibitor that dissociates the mTORC1 and mTORC2 complexes.
    Weinberg MA
    Anticancer Drugs; 2016 Jul; 27(6):475-87. PubMed ID: 26918392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin.
    Zou Z; Chen J; Yang J; Bai X
    Curr Cancer Drug Targets; 2016; 16(4):288-304. PubMed ID: 26563881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
    Gordon BS; Kazi AA; Coleman CS; Dennis MD; Chau V; Jefferson LS; Kimball SR
    Cell Signal; 2014 Mar; 26(3):461-7. PubMed ID: 24316235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete Mechanistic Target of Rapamycin Signaling Pathways, Stem Cells, and Therapeutic Targets.
    Jhanwar-Uniyal M; Zeller SL; Spirollari E; Das M; Hanft SJ; Gandhi CD
    Cells; 2024 Feb; 13(5):. PubMed ID: 38474373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic modelling of the mTOR signalling network reveals complex emergent behaviours conferred by DEPTOR.
    Varusai TM; Nguyen LK
    Sci Rep; 2018 Jan; 8(1):643. PubMed ID: 29330362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase N controls a lysosomal lipid switch to facilitate nutrient signalling via mTORC1.
    Wallroth A; Koch PA; Marat AL; Krause E; Haucke V
    Nat Cell Biol; 2019 Sep; 21(9):1093-1101. PubMed ID: 31451768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systems study reveals concurrent activation of AMPK and mTOR by amino acids.
    Dalle Pezze P; Ruf S; Sonntag AG; Langelaar-Makkinje M; Hall P; Heberle AM; Razquin Navas P; van Eunen K; Tölle RC; Schwarz JJ; Wiese H; Warscheid B; Deitersen J; Stork B; Fäßler E; Schäuble S; Hahn U; Horvatovich P; Shanley DP; Thedieck K
    Nat Commun; 2016 Nov; 7():13254. PubMed ID: 27869123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1).
    García-Martínez JM; Alessi DR
    Biochem J; 2008 Dec; 416(3):375-85. PubMed ID: 18925875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growing knowledge of the mTOR signaling network.
    Huang K; Fingar DC
    Semin Cell Dev Biol; 2014 Dec; 36():79-90. PubMed ID: 25242279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic modeling of signal transduction by mTOR complexes in cancer.
    Dorvash M; Farahmandnia M; Mosaddeghi P; Farahmandnejad M; Saber H; Khorraminejad-Shirazi M; Azadi A; Tavassoly I
    J Theor Biol; 2019 Dec; 483():109992. PubMed ID: 31493485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FilGAP regulates tumor growth in Glioma through the regulation of mTORC1 and mTORC2.
    Tsutsumi K; Nohara A; Tanaka T; Murano M; Miyagaki Y; Ohta Y
    Sci Rep; 2023 Dec; 13(1):20956. PubMed ID: 38065968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complex network of mTOR signalling in the heart.
    Sciarretta S; Forte M; Frati G; Sadoshima J
    Cardiovasc Res; 2022 Jan; 118(2):424-439. PubMed ID: 33512477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting mTORC1/2 with OSI-027 inhibits proliferation and migration of keloid keratinocytes.
    Chen J; Liu K; Liu Y; Wang X; Zhang Z
    Exp Dermatol; 2019 Mar; 28(3):270-275. PubMed ID: 30650200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.