BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34529928)

  • 1. Comprehensive prediction of robust synthetic lethality between paralog pairs in cancer cell lines.
    De Kegel B; Quinn N; Thompson NA; Adams DJ; Ryan CJ
    Cell Syst; 2021 Dec; 12(12):1144-1159.e6. PubMed ID: 34529928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of synthetic lethal and tumor suppressor paralog pairs in the human genome.
    Parrish PCR; Thomas JD; Gabel AM; Kamlapurkar S; Bradley RK; Berger AH
    Cell Rep; 2021 Aug; 36(9):109597. PubMed ID: 34469736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting synthetic lethal paralogs in cancer.
    Ryan CJ; Mehta I; Kebabci N; Adams DJ
    Trends Cancer; 2023 May; 9(5):397-409. PubMed ID: 36890003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paralog buffering contributes to the variable essentiality of genes in cancer cell lines.
    De Kegel B; Ryan CJ
    PLoS Genet; 2019 Oct; 15(10):e1008466. PubMed ID: 31652272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of synthetic lethality based on a functional network by using machine learning algorithms.
    Li J; Lu L; Zhang YH; Liu M; Chen L; Huang T; Cai YD
    J Cell Biochem; 2019 Jan; 120(1):405-416. PubMed ID: 30125975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide CRISPR screens using isogenic cells reveal vulnerabilities conferred by loss of tumor suppressors.
    Feng X; Tang M; Dede M; Su D; Pei G; Jiang D; Wang C; Chen Z; Li M; Nie L; Xiong Y; Li S; Park JM; Zhang H; Huang M; Szymonowicz K; Zhao Z; Hart T; Chen J
    Sci Adv; 2022 May; 8(19):eabm6638. PubMed ID: 35559673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality.
    Benfatto S; Serçin Ö; Dejure FR; Abdollahi A; Zenke FT; Mardin BR
    Mol Cancer; 2021 Aug; 20(1):111. PubMed ID: 34454516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in-silico approach to predict and exploit synthetic lethality in cancer metabolism.
    Apaolaza I; San José-Eneriz E; Tobalina L; Miranda E; Garate L; Agirre X; Prósper F; Planes FJ
    Nat Commun; 2017 Sep; 8(1):459. PubMed ID: 28878380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paralog-based synthetic lethality: rationales and applications.
    Xin Y; Zhang Y
    Front Oncol; 2023; 13():1168143. PubMed ID: 37350942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens.
    Dede M; McLaughlin M; Kim E; Hart T
    Genome Biol; 2020 Oct; 21(1):262. PubMed ID: 33059726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational methods, databases and tools for synthetic lethality prediction.
    Wang J; Zhang Q; Han J; Zhao Y; Zhao C; Yan B; Dai C; Wu L; Wen Y; Zhang Y; Leng D; Wang Z; Yang X; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging synthetic lethality to uncover potential therapeutic target in gastric cancer.
    Geng H; Qian R; Zhong Y; Tang X; Zhang X; Zhang L; Yang C; Li T; Dong Z; Wang C; Zhang Z; Zhu C
    Cancer Gene Ther; 2024 Feb; 31(2):334-348. PubMed ID: 38040871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference.
    Dou Y; Ren Y; Zhao X; Jin J; Xiong S; Luo L; Xu X; Yang X; Yu J; Guo L; Liang T
    Comput Biol Med; 2024 Mar; 170():108066. PubMed ID: 38310806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DiscoverSL: an R package for multi-omic data driven prediction of synthetic lethality in cancers.
    Das S; Deng X; Camphausen K; Shankavaram U
    Bioinformatics; 2019 Feb; 35(4):701-702. PubMed ID: 30059974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the landscape of synthetic lethal interactions in liver cancer.
    Yang C; Guo Y; Qian R; Huang Y; Zhang L; Wang J; Huang X; Liu Z; Qin W; Wang C; Chen H; Ma X; Zhang D
    Theranostics; 2021; 11(18):9038-9053. PubMed ID: 34522226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Lethality and Cancer - Penetrance as the Major Barrier.
    Ryan CJ; Bajrami I; Lord CJ
    Trends Cancer; 2018 Oct; 4(10):671-683. PubMed ID: 30292351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic Lethality: From Research to Precision Cancer Nanomedicine.
    Gupta A; Ahmad A; Dar AI; Khan R
    Curr Cancer Drug Targets; 2018; 18(4):337-346. PubMed ID: 28669337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient gene knockout and genetic interactions: the IN4MER CRISPR/Cas12a multiplex knockout platform.
    Anvar NE; Lin C; Ma X; Wilson LL; Steger R; Sangree AK; Colic M; Wang SH; Doench JG; Hart T
    bioRxiv; 2023 Sep; ():. PubMed ID: 36712129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying synthetic lethal targets using CRISPR/Cas9 system.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Methods; 2017 Dec; 131():66-73. PubMed ID: 28710008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.