These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 34530076)
41. The conserved active site proline determines the reducing power of Staphylococcus aureus thioredoxin. Roos G; Garcia-Pino A; Van Belle K; Brosens E; Wahni K; Vandenbussche G; Wyns L; Loris R; Messens J J Mol Biol; 2007 May; 368(3):800-11. PubMed ID: 17368484 [TBL] [Abstract][Full Text] [Related]
42. Inhibition of metal-catalyzed oxidation systems by a yeast protector protein in the presence of thioredoxin. Kwon SJ; Park JW; Choi WK; Kim IH; Kim K Biochem Biophys Res Commun; 1994 May; 201(1):8-15. PubMed ID: 7911017 [TBL] [Abstract][Full Text] [Related]
43. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. Du Y; Zhang H; Zhang X; Lu J; Holmgren A J Biol Chem; 2013 Nov; 288(45):32241-32247. PubMed ID: 24062305 [TBL] [Abstract][Full Text] [Related]
44. Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Mazzurco M; Sulaman W; Elina H; Cock JM; Goring DR Plant Mol Biol; 2001 Feb; 45(3):365-76. PubMed ID: 11292081 [TBL] [Abstract][Full Text] [Related]
45. In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae. Mouaheb N; Thomas D; Verdoucq L; Monfort P; Meyer Y Proc Natl Acad Sci U S A; 1998 Mar; 95(6):3312-7. PubMed ID: 9501259 [TBL] [Abstract][Full Text] [Related]
46. Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Ross SJ; Findlay VJ; Malakasi P; Morgan BA Mol Biol Cell; 2000 Aug; 11(8):2631-42. PubMed ID: 10930459 [TBL] [Abstract][Full Text] [Related]
47. The single mutation Trp35-->Ala in the 35-40 redox site of Chlamydomonas reinhardtii thioredoxin h affects its biochemical activity and the pH dependence of C36-C39 1H-13C NMR. Krimm I; Lemaire S; Ruelland E; Miginiac-Maslow M; Jaquot JP; Hirasawa M; Knaff DB; Lancelin JM Eur J Biochem; 1998 Jul; 255(1):185-95. PubMed ID: 9692918 [TBL] [Abstract][Full Text] [Related]
48. Implications of the mitochondrial interactome of mammalian thioredoxin 2 for normal cellular function and disease. Chasapis CT; Makridakis M; Damdimopoulos AE; Zoidakis J; Lygirou V; Mavroidis M; Vlahou A; Miranda-Vizuete A; Spyrou G; Vlamis-Gardikas A Free Radic Biol Med; 2019 Jun; 137():59-73. PubMed ID: 31018154 [TBL] [Abstract][Full Text] [Related]
49. Thioredoxin A active-site mutants form mixed disulfide dimers that resemble enzyme-substrate reaction intermediates. Kouwen TR; Andréll J; Schrijver R; Dubois JY; Maher MJ; Iwata S; Carpenter EP; van Dijl JM J Mol Biol; 2008 Jun; 379(3):520-34. PubMed ID: 18455736 [TBL] [Abstract][Full Text] [Related]
50. G33D mutant thioredoxin primarily affects the kinetics of reaction with thioredoxin reductase. Probing the structure of the mutant protein. Lin TY Biochemistry; 1999 Nov; 38(47):15508-13. PubMed ID: 10569933 [TBL] [Abstract][Full Text] [Related]
51. The essential cysteines in the CIPC motif of the thioredoxin-like Trypanosoma brucei MICOS subunit TbMic20 do not form an intramolecular disulfide bridge in vivo. Kaurov I; Heller J; Deisenhammer S; Potěšil D; Zdráhal Z; Hashimi H Mol Biochem Parasitol; 2022 Mar; 248():111463. PubMed ID: 35157941 [TBL] [Abstract][Full Text] [Related]
52. Role of electrostatic interactions on the affinity of thioredoxin for target proteins. Recognition of chloroplast fructose-1, 6-bisphosphatase by mutant Escherichia coli thioredoxins. Mora-García S; Rodríguez-Suárez R; Wolosiuk RA J Biol Chem; 1998 Jun; 273(26):16273-80. PubMed ID: 9632687 [TBL] [Abstract][Full Text] [Related]
53. Tuning of thioredoxin redox properties by intramolecular hydrogen bonds. Røhr ÅK; Hammerstad M; Andersson KK PLoS One; 2013; 8(7):e69411. PubMed ID: 23936007 [TBL] [Abstract][Full Text] [Related]
54. The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells. Myers CR; Myers JM Toxicology; 2009 Mar; 257(1-2):95-104. PubMed ID: 19135121 [TBL] [Abstract][Full Text] [Related]
55. Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues. Hashemy SI; Holmgren A J Biol Chem; 2008 Aug; 283(32):21890-8. PubMed ID: 18544525 [TBL] [Abstract][Full Text] [Related]
56. Thioredoxin Cross-Linking by Nitrogen Mustard in Lung Epithelial Cells: Formation of Multimeric Thioredoxin/Thioredoxin Reductase Complexes and Inhibition of Disulfide Reduction. Jan YH; Heck DE; Casillas RP; Laskin DL; Laskin JD Chem Res Toxicol; 2015 Nov; 28(11):2091-103. PubMed ID: 26451472 [TBL] [Abstract][Full Text] [Related]
57. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide. López-Mirabal HR; Thorsen M; Kielland-Brandt MC; Toledano MB; Winther JR FEMS Yeast Res; 2007 May; 7(3):391-403. PubMed ID: 17253982 [TBL] [Abstract][Full Text] [Related]
58. Effect of pH on the oxidation-reduction properties of thioredoxins. Setterdahl AT; Chivers PT; Hirasawa M; Lemaire SD; Keryer E; Miginiac-Maslow M; Kim SK; Mason J; Jacquot JP; Longbine CC; de Lamotte-Guery F; Knaff DB Biochemistry; 2003 Dec; 42(50):14877-84. PubMed ID: 14674763 [TBL] [Abstract][Full Text] [Related]