BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34530133)

  • 1. The biological regulation of sea urchin larval skeletogenesis - From genes to biomineralized tissue.
    Gildor T; Winter MR; Layous M; Hijaze E; Ben-Tabou de-Leon S
    J Struct Biol; 2021 Dec; 213(4):107797. PubMed ID: 34530133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VEGF signaling activates the matrix metalloproteinases, MmpL7 and MmpL5 at the sites of active skeletal growth and MmpL7 regulates skeletal elongation.
    Morgulis M; Winter MR; Shternhell L; Gildor T; Ben-Tabou de-Leon S
    Dev Biol; 2021 May; 473():80-89. PubMed ID: 33577829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-vesicles perform active diffusion in the sea urchin embryo during larval biomineralization.
    Winter MR; Morgulis M; Gildor T; Cohen AR; Ben-Tabou de-Leon S
    PLoS Comput Biol; 2021 Feb; 17(2):e1008780. PubMed ID: 33617532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo.
    Tarsis K; Gildor T; Morgulis M; Ben-Tabou de-Leon S
    Dev Dyn; 2022 Aug; 251(8):1322-1339. PubMed ID: 35403290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms.
    Morgulis M; Gildor T; Roopin M; Sher N; Malik A; Lalzar M; Dines M; Ben-Tabou de-Leon S; Khalaily L; Ben-Tabou de-Leon S
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12353-12362. PubMed ID: 31152134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks.
    Ben-Tabou de-Leon S
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H
    Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROCK and the actomyosin network control biomineral growth and morphology during sea urchin skeletogenesis.
    Hijaze E; Gildor T; Seidel R; Layous M; Winter M; Bertinetti L; Politi Y; Ben-Tabou de-Leon S
    Elife; 2024 Apr; 12():. PubMed ID: 38573316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. microRNA-1 regulates sea urchin skeletogenesis by directly targeting skeletogenic genes and modulating components of signaling pathways.
    Sampilo NF; Song JL
    Dev Biol; 2024 Apr; 508():123-137. PubMed ID: 38290645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus.
    Livingston BT; Killian CE; Wilt F; Cameron A; Landrum MJ; Ermolaeva O; Sapojnikov V; Maglott DR; Buchanan AM; Ettensohn CA
    Dev Biol; 2006 Dec; 300(1):335-48. PubMed ID: 16987510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule.
    Peled-Kamar M; Hamilton P; Wilt FH
    Exp Cell Res; 2002 Jan; 272(1):56-61. PubMed ID: 11740865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo.
    Ettensohn CA; Illies MR; Oliveri P; De Jong DL
    Development; 2003 Jul; 130(13):2917-28. PubMed ID: 12756175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos.
    Bradham CA; Miranda EL; McClay DR
    Dev Dyn; 2004 Apr; 229(4):713-21. PubMed ID: 15042695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos.
    Schatzberg D; Lawton M; Hadyniak SE; Ross EJ; Carney T; Beane WS; Levin M; Bradham CA
    Dev Biol; 2015 Oct; 406(2):259-70. PubMed ID: 26282894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Juvenile skeletogenesis in anciently diverged sea urchin clades.
    Gao F; Thompson JR; Petsios E; Erkenbrack E; Moats RA; Bottjer DJ; Davidson EH
    Dev Biol; 2015 Apr; 400(1):148-58. PubMed ID: 25641694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution.
    Ettensohn CA; Guerrero-Santoro J; Khor JM
    Curr Top Dev Biol; 2022; 146():113-148. PubMed ID: 35152981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genomic regulatory control of skeletal morphogenesis in the sea urchin.
    Rafiq K; Cheers MS; Ettensohn CA
    Development; 2012 Feb; 139(3):579-90. PubMed ID: 22190640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo.
    Sun Z; Ettensohn CA
    Dev Biol; 2017 Jan; 421(2):149-160. PubMed ID: 27955944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zygotic hypoxia-inducible factor alpha regulates spicule elongation in the sea urchin embryo.
    Chang WL; Su YH
    Dev Biol; 2022 Apr; 484():63-74. PubMed ID: 35183512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.