These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34530244)
1. Diagnosis of cadmium contamination in urban and suburban soils using visible-to-near-infrared spectroscopy. Hong Y; Chen Y; Shen R; Chen S; Xu G; Cheng H; Guo L; Wei Z; Yang J; Liu Y; Shi Z; Mouazen AM Environ Pollut; 2021 Dec; 291():118128. PubMed ID: 34530244 [TBL] [Abstract][Full Text] [Related]
2. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Hong Y; Shen R; Cheng H; Chen Y; Zhang Y; Liu Y; Zhou M; Yu L; Liu Y; Liu Y Sci Total Environ; 2019 Feb; 651(Pt 2):1969-1982. PubMed ID: 30321720 [TBL] [Abstract][Full Text] [Related]
3. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy. Chen T; Chang Q; Clevers JG; Kooistra L Environ Pollut; 2015 Nov; 206():217-26. PubMed ID: 26188912 [TBL] [Abstract][Full Text] [Related]
4. Potential of visible and near infrared spectroscopy coupled with machine learning for predicting soil metal concentrations at the regional scale. Nyarko F; Tack FMG; Mouazen AM Sci Total Environ; 2022 Oct; 841():156582. PubMed ID: 35714741 [TBL] [Abstract][Full Text] [Related]
5. Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in urban soils. Yu K; Van Geel M; Ceulemans T; Geerts W; Ramos MM; Serafim C; Sousa N; Castro PML; Kastendeuch P; Najjar G; Ameglio T; Ngao J; Saudreau M; Honnay O; Somers B Environ Pollut; 2018 Dec; 243(Pt B):1912-1922. PubMed ID: 30408880 [TBL] [Abstract][Full Text] [Related]
6. Rapid detection of cadmium and its distribution in Miscanthus sacchariflorus based on visible and near-infrared hyperspectral imaging. Feng X; Chen H; Chen Y; Zhang C; Liu X; Weng H; Xiao S; Nie P; He Y Sci Total Environ; 2019 Apr; 659():1021-1031. PubMed ID: 31096318 [TBL] [Abstract][Full Text] [Related]
7. Analysis of visible and near infrared spectral reflectance for assessing metals in soil. Rathod PH; Müller I; Van der Meer FD; de Smeth B Environ Monit Assess; 2015 Oct; 188(10):558. PubMed ID: 27614958 [TBL] [Abstract][Full Text] [Related]
8. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism. Chen L; Lai J; Tan K; Wang X; Chen Y; Ding J Sci Total Environ; 2022 Mar; 813():151882. PubMed ID: 34822891 [TBL] [Abstract][Full Text] [Related]
9. Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy. Paltseva AA; Deeb M; Di Iorio E; Circelli L; Cheng Z; Colombo C Sci Total Environ; 2022 Feb; 809():151107. PubMed ID: 34688767 [TBL] [Abstract][Full Text] [Related]
10. [Prediction of Cadmium Content in the Leaves of Navel Orange in Heavy Metal Contaminated Soil Using VIS-NIR Reflectance Spectroscopy]. Shi RJ; Pan XZ; Wang CK; Liu Y; Li YL; Li ZT Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3140-5. PubMed ID: 26978924 [TBL] [Abstract][Full Text] [Related]
11. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: feature selection. Shi T; Chen Y; Liu H; Wang J; Wu G Appl Spectrosc; 2014; 68(8):831-7. PubMed ID: 25061784 [TBL] [Abstract][Full Text] [Related]
12. A Comparative Assessment of the Influences of Human Impacts on Soil Cd Concentrations Based on Stepwise Linear Regression, Classification and Regression Tree, and Random Forest Models. Qiu L; Wang K; Long W; Wang K; Hu W; Amable GS PLoS One; 2016; 11(3):e0151131. PubMed ID: 26964095 [TBL] [Abstract][Full Text] [Related]
13. Reflectance spectroscopy study of Cd contamination in the sediments of the Changjiang River, China. Xia XQ; Mao YQ; Ji JF; Rui H; Chen J; Liao QL Environ Sci Technol; 2007 May; 41(10):3449-54. PubMed ID: 17547162 [TBL] [Abstract][Full Text] [Related]
14. [Analysis of visible and near-infrared spectra of As-contaminated soil in croplands beside mines]. Ren HY; Zhuang DF; Qiu DS; Pan JJ Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):114-8. PubMed ID: 19385218 [TBL] [Abstract][Full Text] [Related]
15. Modelling potentially toxic elements in forest soils with vis-NIR spectra and learning algorithms. Gholizadeh A; Saberioon M; Ben-Dor E; Viscarra Rossel RA; Borůvka L Environ Pollut; 2020 Dec; 267():115574. PubMed ID: 33254595 [TBL] [Abstract][Full Text] [Related]
16. Soil Nitrogen Content Detection Based on Near-Infrared Spectroscopy. Tan B; You W; Tian S; Xiao T; Wang M; Zheng B; Luo L Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298363 [TBL] [Abstract][Full Text] [Related]
17. Inversion study of cadmium content in soil based on reflection spectroscopy and MSC-ELM model. Xiao D; Huang J; Li J; Fu Y; Li Z Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 283():121696. PubMed ID: 35987037 [TBL] [Abstract][Full Text] [Related]
18. Improved classification of soil As contamination at continental scale: Resolving class imbalances using machine learning approach. Hu T; Li K; Ma C; Zhou N; Chen Q; Qi C Chemosphere; 2024 Sep; 363():142697. PubMed ID: 38925515 [TBL] [Abstract][Full Text] [Related]
19. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy. Yousefi G; Homaee M; Norouzi AA Environ Monit Assess; 2018 Aug; 190(9):513. PubMed ID: 30105407 [TBL] [Abstract][Full Text] [Related]
20. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Tan K; Ma W; Wu F; Du Q Environ Monit Assess; 2019 Jun; 191(7):446. PubMed ID: 31214787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]