BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34530395)

  • 1. Speed of sound in the IEC tissue-mimicking material and its maintenance solution as a function of temperature.
    Monteiro Souza R; de Assis MKM; Pereira Barretto da Costa-Félix R; Victor Alvarenga A
    Ultrasonics; 2022 Jan; 118():106564. PubMed ID: 34530395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reference characterisation of sound speed and attenuation of the IEC agar-based tissue-mimicking material up to a frequency of 60 MHz.
    Rajagopal S; Sadhoo N; Zeqiri B
    Ultrasound Med Biol; 2015 Jan; 41(1):317-33. PubMed ID: 25220268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel tissue mimicking materials for high frequency breast ultrasound phantoms.
    Cannon LM; Fagan AJ; Browne JE
    Ultrasound Med Biol; 2011 Jan; 37(1):122-35. PubMed ID: 21084158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation Coefficients of the Individual Components of the International Electrotechnical Commission Agar Tissue-Mimicking Material.
    Rabell-Montiel A; Anderson T; Pye SD; Moran CM
    Ultrasound Med Biol; 2018 Nov; 44(11):2371-2378. PubMed ID: 30076033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband Acoustic Measurement of an Agar-Based Tissue-Mimicking-Material: A Longitudinal Study.
    Rabell Montiel A; Browne JE; Pye SD; Anderson TA; Moran CM
    Ultrasound Med Biol; 2017 Jul; 43(7):1494-1505. PubMed ID: 28450032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an example flow test object and comparison of five of these test objects, constructed in various laboratories.
    Teirlinck CJ; Bezemer RA; Kollmann C; Lubbers J; Hoskins PR; Ramnarine KV; Fish P; Fredeldt KE; Schaarschmidt UG
    Ultrasonics; 1998 Feb; 36(1-5):653-60. PubMed ID: 9651595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications.
    Sun C; Pye SD; Browne JE; Janeczko A; Ellis B; Butler MB; Sboros V; Thomson AJ; Brewin MP; Earnshaw CH; Moran CM
    Ultrasound Med Biol; 2012 Jul; 38(7):1262-70. PubMed ID: 22502881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotid atherosclerotic plaque characterisation by measurement of ultrasound sound speed in vitro at high frequency, 20 MHz.
    Brewin MP; Srodon PD; Greenwald SE; Birch MJ
    Ultrasonics; 2014 Feb; 54(2):428-41. PubMed ID: 23683797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of Reference Material Certification for Speed of Sound and Attenuation Coefficient Based on Standard Tissue-Mimicking Material.
    Maia TQS; Alvarenga AV; Souza RM; Costa-Félix RPB
    Ultrasound Med Biol; 2021 Jul; 47(7):1904-1919. PubMed ID: 33896678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A closer look at ultrasonic attenuation and heating in a tissue-mimicking material.
    Maruvada S; Liu Y; Soneson JE; Herman BA; Harris GR
    Phys Med Biol; 2018 Dec; 63(24):245008. PubMed ID: 30523987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound.
    King RL; Liu Y; Maruvada S; Herman BA; Wear KA; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1397-405. PubMed ID: 21768024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a fat tissue mimicking material for high intensity focused ultrasound applications.
    Filippou A; Louca I; Damianou C
    J Ultrasound; 2023 Jun; 26(2):505-515. PubMed ID: 36414928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speed of sound in rubber-based materials for ultrasonic phantoms.
    Cafarelli A; Miloro P; Verbeni A; Carbone M; Menciassi A
    J Ultrasound; 2016 Dec; 19(4):251-256. PubMed ID: 27965715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterization of polyurethane-based tissue and blood mimicking materials for high intensity therapeutic ultrasound.
    Liu Y; Maruvada S
    J Acoust Soc Am; 2022 May; 151(5):3043. PubMed ID: 35649924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a soft tissue-mimicking agar/wood powder material for MRgFUS applications.
    Drakos T; Giannakou M; Menikou G; Constantinides G; Damianou C
    Ultrasonics; 2021 May; 113():106357. PubMed ID: 33548756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metrological Validation of a Measurement Procedure for the Characterization of a Biological Ultrasound Tissue-Mimicking Material.
    Santos TQ; Alvarenga AV; Oliveira DP; Costa-Felix RP
    Ultrasound Med Biol; 2017 Jan; 43(1):323-331. PubMed ID: 27756496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating.
    Killingback AL; Newey VR; El-Brawany MA; Nassiri DK
    Ultrasound Med Biol; 2008 Dec; 34(12):2035-42. PubMed ID: 18723269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an ultrasound training phantom of the thyroid gland: physical characteristics of TMM.
    Ma SC; Kong YK; Ahn YM; Park KJ
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2004 Oct; 60(10):1459-66. PubMed ID: 15565016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface refraction of sound waves affects calibration of three-dimensional ultrasound.
    Ballhausen H; Ballhausen BD; Lachaine M; Li M; Parodi K; Belka C; Reiner M
    Radiat Oncol; 2015 May; 10():119. PubMed ID: 26014494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.