These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34530403)

  • 1. The Nature of Finger Enslaving: New Results and Their Implications.
    Abolins V; Latash ML
    Motor Control; 2021 Sep; 25(4):680-703. PubMed ID: 34530403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the origin of finger enslaving: control with referent coordinates and effects of visual feedback.
    Abolins V; Stremoukhov A; Walter C; Latash ML
    J Neurophysiol; 2020 Dec; 124(6):1625-1636. PubMed ID: 32997555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unintentional drifts in performance during one-hand and two-hand finger force production.
    Abolins V; Ormanis J; Latash ML
    Exp Brain Res; 2023 Mar; 241(3):699-712. PubMed ID: 36690719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation-induced fast drifts in finger enslaving.
    Ricotta J; Cuadra C; Evans JS; Latash ML
    Exp Brain Res; 2021 Mar; 239(3):891-902. PubMed ID: 33423068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the nature of unintentional action: a study of force/moment drifts during multifinger tasks.
    Parsa B; O'Shea DJ; Zatsiorsky VM; Latash ML
    J Neurophysiol; 2016 Aug; 116(2):698-708. PubMed ID: 27193319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finger interdependence and unintentional force drifts: Lessons from manipulations of visual feedback.
    Hirose J; Cuadra C; Walter C; Latash ML
    Hum Mov Sci; 2020 Dec; 74():102714. PubMed ID: 33166906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two classes of action-stabilizing synergies reflecting spinal and supraspinal circuitry.
    De SD; Ricotta JM; Benamati A; Latash ML
    J Neurophysiol; 2024 Feb; 131(2):152-165. PubMed ID: 38116603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unintentional force drifts across the human fingers: implications for the neural control of finger tasks.
    Abolins V; Latash ML
    Exp Brain Res; 2022 Mar; 240(3):751-761. PubMed ID: 35022805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of visual feedback and memory on unintentional drifts in performance during finger-pressing tasks.
    Solnik S; Qiao M; Latash ML
    Exp Brain Res; 2017 Apr; 235(4):1149-1162. PubMed ID: 28168396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unintentional Force Drifts as Consequences of Indirect Force Control with Spatial Referent Coordinates.
    Abolins V; Latash ML
    Neuroscience; 2022 Jan; 481():156-165. PubMed ID: 34774968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of hand force production. I. Hand level control variables and multifinger synergies.
    Reschechtko S; Latash ML
    J Neurophysiol; 2017 Dec; 118(6):3152-3164. PubMed ID: 28904102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case Studies in Neuroscience: The central and somatosensory contributions to finger interdependence and coordination: lessons from a study of a "deafferented person".
    Cuadra C; Falaki A; Sainburg R; Sarlegna FR; Latash ML
    J Neurophysiol; 2019 Jun; 121(6):2083-2087. PubMed ID: 30969884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance.
    Parsa B; Terekhov A; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2017 Feb; 235(2):481-496. PubMed ID: 27785549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceptual and Motor Effects of Muscle Co-activation in a Force Production Task.
    Cuadra C; Wojnicz W; Kozinc Z; Latash ML
    Neuroscience; 2020 Jun; 437():34-44. PubMed ID: 32335217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of steady hand force production explored across spaces and methods of analysis.
    de Freitas PB; Freitas SMSF; Lewis MM; Huang X; Latash ML
    Exp Brain Res; 2018 Jun; 236(6):1545-1562. PubMed ID: 29564506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force matching: motor effects that are not reported by the actor.
    Pawłowski M; Ricotta JM; De SD; Latash ML
    Exp Brain Res; 2024 Jun; 242(6):1439-1453. PubMed ID: 38652273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unintentional drifts during quiet stance and voluntary body sway.
    Rasouli O; Solnik S; Furmanek MP; Piscitelli D; Falaki A; Latash ML
    Exp Brain Res; 2017 Jul; 235(7):2301-2316. PubMed ID: 28477042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What do people match when they try to match force? Analysis at the level of hypothetical control variables.
    Abolins V; Cuadra C; Ricotta J; Latash ML
    Exp Brain Res; 2020 Sep; 238(9):1885-1901. PubMed ID: 32537705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-finger interaction during involuntary and voluntary single finger force changes.
    Martin JR; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2011 Feb; 208(3):423-35. PubMed ID: 21104236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of sub-maximal force production in the enslaving phenomenon.
    Slobounov S; Johnston J; Chiang H; Ray W
    Brain Res; 2002 Nov; 954(2):212-9. PubMed ID: 12414104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.