These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34531329)

  • 1. Imaging Structural and Functional Dynamics in
    Cline HT
    Cold Spring Harb Protoc; 2022 Feb; 2022(2):pdb.top106773. PubMed ID: 34531329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bulk Dye Loading for In Vivo Calcium Imaging of Visual Responses in Populations of
    Hogg PW; Haas K
    Cold Spring Harb Protoc; 2022 Jan; 2022(1):. PubMed ID: 33782097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner.
    Gambrill AC; Faulkner RL; McKeown CR; Cline HT
    J Neurophysiol; 2019 Jan; 121(1):306-320. PubMed ID: 30517041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Time-Lapse Imaging and Analysis of Dendritic Structural Plasticity in
    He HY; Lin CY; Cline HT
    Cold Spring Harb Protoc; 2022 Jan; 2022(1):pdb.prot106781. PubMed ID: 33790043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precisely controlled visual stimulation to study experience-dependent neural plasticity in
    Hiramoto M; Cline HT
    STAR Protoc; 2021 Mar; 2(1):100252. PubMed ID: 33490972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experience-Dependent Bimodal Plasticity of Inhibitory Neurons in Early Development.
    He HY; Shen W; Hiramoto M; Cline HT
    Neuron; 2016 Jun; 90(6):1203-1214. PubMed ID: 27238867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles.
    Bestman JE; Lee-Osbourne J; Cline HT
    J Comp Neurol; 2012 Feb; 520(2):401-33. PubMed ID: 22113462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of maternal n-3 polyunsaturated fatty acid deficiency on dendritic arbor morphology and connectivity of developing Xenopus laevis central neurons in vivo.
    Igarashi M; Santos RA; Cohen-Cory S
    J Neurosci; 2015 Apr; 35(15):6079-92. PubMed ID: 25878281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.
    Huang YB; Hu CR; Zhang L; Yin W; Hu B
    PLoS One; 2015; 10(10):e0140752. PubMed ID: 26485435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal membrane proteasomes regulate neuronal circuit activity in vivo and are required for learning-induced behavioral plasticity.
    He HY; Ahsan A; Bera R; McLain N; Faulkner R; Ramachandran KV; Margolis SS; Cline HT
    Proc Natl Acad Sci U S A; 2023 Jan; 120(3):e2216537120. PubMed ID: 36630455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System.
    Weiss L; Offner T; Hassenklöver T; Manzini I
    Methods Mol Biol; 2018; 1865():217-231. PubMed ID: 30151769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrode Recording in the
    Hiramoto M; Cline HT
    Cold Spring Harb Protoc; 2021 Nov; 2021(11):pdb.prot107086. PubMed ID: 33536286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo single-cell excitability probing of neuronal ensembles in the intact and awake developing Xenopus brain.
    Dunfield D; Haas K
    Nat Protoc; 2010 May; 5(5):841-8. PubMed ID: 20379139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles.
    Gambrill AC; Faulkner RL; Cline HT
    J Neurophysiol; 2018 May; 119(5):1947-1961. PubMed ID: 29442555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent imaging in vivo of developing blood vessels on the optic tectum of Xenopus laevis.
    Tiedeken JJ; Rovainen CM
    Microvasc Res; 1991 May; 41(3):376-89. PubMed ID: 1712891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between oxygen consumption and neuronal activity in a defined neural circuit.
    Ă–zugur S; Kunz L; Straka H
    BMC Biol; 2020 Jul; 18(1):76. PubMed ID: 32615976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo time-lapse imaging of neuronal development in Xenopus.
    Ruthazer ES; Schohl A; Schwartz N; Tavakoli A; Tremblay M; Cline HT
    Cold Spring Harb Protoc; 2013 Sep; 2013(9):804-9. PubMed ID: 24003201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic maturation of the Xenopus retinotectal system: effects of brain-derived neurotrophic factor on synapse ultrastructure.
    Nikolakopoulou AM; Meynard MM; Marshak S; Cohen-Cory S
    J Comp Neurol; 2010 Apr; 518(7):972-89. PubMed ID: 20127801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Simple and Efficient Method for Visualizing Individual Cells
    Schohl A; Chorghay Z; Ruthazer ES
    Front Neural Circuits; 2020; 14():47. PubMed ID: 32848634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid Hormone Acts Locally to Increase Neurogenesis, Neuronal Differentiation, and Dendritic Arbor Elaboration in the Tadpole Visual System.
    Thompson CK; Cline HT
    J Neurosci; 2016 Oct; 36(40):10356-10375. PubMed ID: 27707971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.