These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 34531487)
41. Scanning tunneling microscopy and scanning tunneling spectroscopy studies of planar and nonplanar naphthalocyanines on graphite (0001). Part 1: effect of nonplanarity on the adlayer structure and voltage-induced flipping of nonplanar tin-naphthalocyanine. Gopakumar TG; Müller F; Hietschold M J Phys Chem B; 2006 Mar; 110(12):6051-9. PubMed ID: 16553416 [TBL] [Abstract][Full Text] [Related]
42. Localized electronic structures of graphene oxide studied using scanning tunneling microscopy and spectroscopy. Katano S; Wei T; Sasajima T; Kasama R; Uehara Y Phys Chem Chem Phys; 2018 Jul; 20(26):17977-17982. PubMed ID: 29926860 [TBL] [Abstract][Full Text] [Related]
43. Electrochemically induced adsorption of radio-labeled DNA on gold and HOPG substrates for STM investigations. Brown GM; Allison DP; Warmack RJ; Jacobson KB; Larimer FW; Woychik RP; Carrier WL Ultramicroscopy; 1991 Dec; 38(3-4):253-64. PubMed ID: 1785142 [TBL] [Abstract][Full Text] [Related]
44. Molecular adsorbates as probes of the local properties of doped graphene. Pham VD; Joucken F; Repain V; Chacon C; Bellec A; Girard Y; Rousset S; Sporken R; dos Santos MC; Lagoute J Sci Rep; 2016 Apr; 6():24796. PubMed ID: 27097555 [TBL] [Abstract][Full Text] [Related]
45. Shifting atomic patterns: on the origin of the different atomic-scale patterns of graphite as observed using scanning tunnelling microscopy. Wong HS; Durkan C Nanotechnology; 2012 May; 23(18):185703. PubMed ID: 22499165 [TBL] [Abstract][Full Text] [Related]
46. Hydrogen bonding network of truxenone on a graphite surface studied with scanning tunneling microscopy and theoretical computation. Yang ZY; Tao Y; Chen T; Yan HJ; Wang ZX Phys Chem Chem Phys; 2013 Feb; 15(6):2105-8. PubMed ID: 23288028 [TBL] [Abstract][Full Text] [Related]
47. Adsorptive mercaptan removal of liquid phase using nanoporous graphene: Equilibrium, kinetic study and DFT calculations. Meshkat SS; Tavakoli O; Rashidi A; Esrafili MD Ecotoxicol Environ Saf; 2018 Dec; 165():533-539. PubMed ID: 30223166 [TBL] [Abstract][Full Text] [Related]
48. Intermolecular vs molecule-substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001). Roos M; Uhl B; Künzel D; Hoster HE; Groß A; Behm RJ Beilstein J Nanotechnol; 2011; 2():365-73. PubMed ID: 22003444 [TBL] [Abstract][Full Text] [Related]
49. Adsorption of human serum albumin onto highly orientated pyrolytic graphite surface studied by atomic force microscopy. Peng X; Fu H; Liu R; Zhao L; Zu Y; Xu F; Liu Z Scanning; 2015; 37(2):158-64. PubMed ID: 25684275 [TBL] [Abstract][Full Text] [Related]
50. Identifying configuration and orientation of adsorbed molecules by inelastic electron tunneling spectra. Ren H; Yang J; Luo Y J Chem Phys; 2010 Aug; 133(6):064702. PubMed ID: 20707581 [TBL] [Abstract][Full Text] [Related]
51. Can graphene be used as a substrate for Raman enhancement? Ling X; Xie L; Fang Y; Xu H; Zhang H; Kong J; Dresselhaus MS; Zhang J; Liu Z Nano Lett; 2010 Feb; 10(2):553-61. PubMed ID: 20039694 [TBL] [Abstract][Full Text] [Related]
52. Self-assembly of long chain alkanes and their derivatives on graphite. Yang T; Berber S; Liu JF; Miller GP; Tománek D J Chem Phys; 2008 Mar; 128(12):124709. PubMed ID: 18376962 [TBL] [Abstract][Full Text] [Related]
53. Conformation diversity of a fused-ring pyrazine derivative on au(111) and highly ordered pyrolytic graphite. Yan HJ; Sändig N; Wang H; Wang D; Zerbetto F; Zhan X; Wan LJ Chem Asian J; 2015 Jun; 10(6):1311-7. PubMed ID: 25827351 [TBL] [Abstract][Full Text] [Related]
54. Sub-molecular spectroscopy and temporary molecular charging of Ni-phthalocyanine on graphene with STM. Zhao M; Almarzouqi F; Duverger E; Sonnet P; Dujardin G; Mayne AJ Phys Chem Chem Phys; 2018 Jul; 20(29):19507-19514. PubMed ID: 29999070 [TBL] [Abstract][Full Text] [Related]
55. An Improved Substrate for Superior Imaging of Individual Biomacromolecules with Atomic Force Microscopy. Klinov DV; Protopopova AD; Andrianov DS; Litvinov RI; Weisel JW Colloids Surf B Biointerfaces; 2020 Dec; 196():111321. PubMed ID: 32841787 [TBL] [Abstract][Full Text] [Related]
56. Atomic-Scale Characterization of Graphene p-n Junctions for Electron-Optical Applications. Zhou X; Kerelsky A; Elahi MM; Wang D; Habib KMM; Sajjad RN; Agnihotri P; Lee JU; Ghosh AW; Ross FM; Pasupathy AN ACS Nano; 2019 Feb; 13(2):2558-2566. PubMed ID: 30689949 [TBL] [Abstract][Full Text] [Related]
57. Dynamic observation of layer-by-layer growth and removal of graphene on Ru(0001). Cui Y; Fu Q; Bao X Phys Chem Chem Phys; 2010 May; 12(19):5053-7. PubMed ID: 20445907 [TBL] [Abstract][Full Text] [Related]
58. Toward tunable doping in graphene FETs by molecular self-assembled monolayers. Li B; Klekachev AV; Cantoro M; Huyghebaert C; Stesmans A; Asselberghs I; De Gendt S; De Feyter S Nanoscale; 2013 Oct; 5(20):9640-4. PubMed ID: 23827941 [TBL] [Abstract][Full Text] [Related]
59. Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. Müllen K; Rabe JP Acc Chem Res; 2008 Apr; 41(4):511-20. PubMed ID: 18410086 [TBL] [Abstract][Full Text] [Related]
60. Desorption of physisorbed molecular oxygen from coronene films and graphite surfaces. Mohamed Ibrahim AS; Morisset S; Baouche S; Dulieu F J Chem Phys; 2022 May; 156(19):194307. PubMed ID: 35597657 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]