These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34531493)

  • 1. Shouting strengthens maximal voluntary force and is associated with augmented pupillary dilation.
    Takarada Y; Nozaki D
    Sci Rep; 2021 Sep; 11(1):18419. PubMed ID: 34531493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shouting strengthens voluntary force during sustained maximal effort through enhancement of motor system state via motor commands.
    Takarada Y; Nozaki D
    Sci Rep; 2022 Sep; 12(1):16182. PubMed ID: 36171262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pupil dilations induced by barely conscious reward goal-priming.
    Takarada Y; Nozaki D
    Neuropsychologia; 2017 Aug; 103():69-76. PubMed ID: 28733248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle length effect on corticospinal excitability during maximal concentric, isometric and eccentric contractions of the knee extensors.
    Doguet V; Nosaka K; Guével A; Thickbroom G; Ishimura K; Jubeau M
    Exp Physiol; 2017 Nov; 102(11):1513-1523. PubMed ID: 28796385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D; Temesi J; Gruet M; Yokoyama K; Rupp T; Millet GY; Verges S
    Neuroscience; 2016 Feb; 314():125-33. PubMed ID: 26642805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial magnetic stimulation during voluntary action: directional facilitation of outputs and relationships to force generation.
    Cros D; Soto O; Chiappa KH
    Brain Res; 2007 Dec; 1185():103-16. PubMed ID: 17961516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The unconscious mental inhibiting process of human maximal voluntary contraction.
    Takarada Y; Nozaki D
    Psychol Res; 2022 Jul; 86(5):1458-1466. PubMed ID: 34398275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained Maximal Voluntary Contractions Elicit Different Neurophysiological Responses in Upper- and Lower-Limb Muscles in Men.
    Temesi J; Vernillo G; Martin M; Krüger RL; McNeil CJ; Millet GY
    Neuroscience; 2019 Dec; 422():88-98. PubMed ID: 31682821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the cortical silent period during force control.
    Matsugi A
    Somatosens Mot Res; 2019 Mar; 36(1):8-13. PubMed ID: 30654690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The loss of muscle force production after muscle stretching is not accompanied by altered corticospinal excitability.
    Pulverenti TS; Trajano GS; Kirk BJC; Blazevich AJ
    Eur J Appl Physiol; 2019 Oct; 119(10):2287-2299. PubMed ID: 31456049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anodal tDCS applied during strength training enhances motor cortical plasticity.
    Hendy AM; Kidgell DJ
    Med Sci Sports Exerc; 2013 Sep; 45(9):1721-9. PubMed ID: 23470308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of forearm position and contraction intensity on cortical and spinal excitability during a submaximal force steadiness task of the elbow flexors.
    Yacyshyn AF; Kuzyk S; Jakobi JM; McNeil CJ
    J Neurophysiol; 2020 Feb; 123(2):522-528. PubMed ID: 31774348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of transient vascular occlusion of the upper arm on motor evoked potentials during force exertion.
    Takarada Y; Ohki Y; Taira M
    Neurosci Res; 2013 Aug; 76(4):224-9. PubMed ID: 23806753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motivational goal-priming with or without awareness produces faster and stronger force exertion.
    Takarada Y; Nozaki D
    Sci Rep; 2018 Jul; 8(1):10135. PubMed ID: 29973646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-exercise depression following submaximal and maximal isometric voluntary contraction.
    Cunningham DA; Janini D; Wyant A; Bonnett C; Varnerin N; Sankarasubramanian V; Potter-Baker KA; Roelle S; Wang X; Siemionow V; Yue GH; Plow EB
    Neuroscience; 2016 Jun; 326():95-104. PubMed ID: 27058145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation.
    Bowtell JL; Avenell G; Hunter SP; Mileva KN
    PLoS One; 2013; 8(10):e77004. PubMed ID: 24098574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
    Todd G; Taylor JL; Butler JE; Martin PG; Gorman RB; Gandevia SC
    J Appl Physiol (1985); 2007 May; 102(5):1756-66. PubMed ID: 17218428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paired-pulse rTMS at trans-synaptic intervals increases corticomotor excitability and reduces the rate of force loss during a fatiguing exercise of the hand.
    Benwell NM; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Nov; 175(4):626-32. PubMed ID: 16783555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change in the ipsilateral motor cortex excitability is independent from a muscle contraction phase during unilateral repetitive isometric contractions.
    Uehara K; Morishita T; Kubota S; Funase K
    PLoS One; 2013; 8(1):e55083. PubMed ID: 23383063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sustained unilateral handgrip on corticomotor excitability in both knee extensor muscles.
    Matsuura R; Yunoki T; Shirakawa K; Ohtsuka Y
    Eur J Appl Physiol; 2020 Aug; 120(8):1865-1879. PubMed ID: 32533244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.