These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 34531627)
21. Fixing and extending some recent results on the ADMM algorithm. Banert S; Boţ RI; Csetnek ER Numer Algorithms; 2021; 86(3):1303-1325. PubMed ID: 33603318 [TBL] [Abstract][Full Text] [Related]
25. On properties of geodesic semilocal E-preinvex functions. Kılıçman A; Saleh W J Inequal Appl; 2018; 2018(1):353. PubMed ID: 30839923 [TBL] [Abstract][Full Text] [Related]
26. A proof of convergence of the concave-convex procedure using Zangwill's theory. Sriperumbudur BK; Lanckriet GR Neural Comput; 2012 Jun; 24(6):1391-407. PubMed ID: 22364501 [TBL] [Abstract][Full Text] [Related]
27. Robust Set Separation Via Exponentials. Dandurova Y; Yeganova L; Falk JE Nonlinear Anal Theory Methods Appl; 2001 Aug; 47(3):1893-1904. PubMed ID: 29503499 [TBL] [Abstract][Full Text] [Related]
28. Beam Allocation and Power Optimization for Energy-Efficiency in Multiuser mmWave Massive MIMO System. Maimaiti S; Chuai G; Gao W; Zhang J Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33917326 [TBL] [Abstract][Full Text] [Related]
29. Optimal Energy-Delay in Energy Harvesting Wireless Sensor Networks with Interference Channels. Jiao D; Ke L; Liu S; Chan FTS Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769900 [TBL] [Abstract][Full Text] [Related]
30. Divergences Induced by the Cumulant and Partition Functions of Exponential Families and Their Deformations Induced by Comparative Convexity. Nielsen F Entropy (Basel); 2024 Feb; 26(3):. PubMed ID: 38539705 [TBL] [Abstract][Full Text] [Related]
31. On the asymptotic behavior of the Douglas-Rachford and proximal-point algorithms for convex optimization. Banjac G; Lygeros J Optim Lett; 2021; 15(8):2719-2732. PubMed ID: 34721701 [TBL] [Abstract][Full Text] [Related]
33. Convex optimization-based high-speed and security joint optimization scheme in optical access networks. Hu A; Gan L; Guo L; Yan H; Hu J Opt Express; 2024 Feb; 32(4):6748-6764. PubMed ID: 38439373 [TBL] [Abstract][Full Text] [Related]
34. Efficient Deterministic Algorithm for Huge-Sized Noisy Sensor Localization Problems via Canonical Duality Theory. Latorre V; Gao DY IEEE Trans Cybern; 2021 Oct; 51(10):5069-5081. PubMed ID: 30703055 [TBL] [Abstract][Full Text] [Related]
35. Quantum Polar Duality and the Symplectic Camel: A New Geometric Approach to Quantization. Gosson MA Found Phys; 2021; 51(3):60. PubMed ID: 34720131 [TBL] [Abstract][Full Text] [Related]
36. A recurrent neural network for solving a class of generalized convex optimization problems. Hosseini A; Wang J; Hosseini SM Neural Netw; 2013 Aug; 44():78-86. PubMed ID: 23584134 [TBL] [Abstract][Full Text] [Related]
37. A unified analysis of convex and non‑convex Won JH; Lange K; Xu J Optim Lett; 2023 Jun; 17(5):1133-1159. PubMed ID: 38516636 [TBL] [Abstract][Full Text] [Related]
38. Optimal Channel Design: A Game Theoretical Analysis. Khouzani M; Malacaria P Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265764 [TBL] [Abstract][Full Text] [Related]
39. Convex Dual Theory Analysis of Two-Layer Convolutional Neural Networks With Soft-Thresholding. Xiong C; Zhang C; Lu M; Yu X; Cao J; Chen Z; Guo D; Qu X IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38294919 [TBL] [Abstract][Full Text] [Related]
40. A forward-backward penalty scheme with inertial effects for monotone inclusions. Applications to convex bilevel programming. Boţ RI; Nguyen DK Optimization; 2019; 68(10):1855-1880. PubMed ID: 31708644 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]