BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34531704)

  • 1. Evaluating schematic route maps in wayfinding tasks for in-car navigation.
    Galvão ML; Krukar J; Schwering A
    Cartogr Geogr Inf Sci; 2021; 48(5):449-469. PubMed ID: 34531704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wayfinding and acquisition of spatial knowledge with navigation assistance.
    Münzer S; Lörch L; Frankenstein J
    J Exp Psychol Appl; 2020 Mar; 26(1):73-88. PubMed ID: 31246054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Navigation assistance: a trade-off between wayfinding support and configural learning support.
    Münzer S; Zimmer HD; Baus J
    J Exp Psychol Appl; 2012 Mar; 18(1):18-37. PubMed ID: 22141461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electronic map displays and individual differences in ability on navigation performance.
    Rodes W; Gugerty L
    Hum Factors; 2012 Aug; 54(4):589-99. PubMed ID: 22908682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive map formation through tactile map navigation in visually impaired and sighted persons.
    Ottink L; van Raalte B; Doeller CF; Van der Geest TM; Van Wezel RJA
    Sci Rep; 2022 Jul; 12(1):11567. PubMed ID: 35798929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-related connectivity of decision points during spatial navigation in a schematic map.
    Qi Q; Weng Y; Zheng S; Wang S; Liu S; Huang Q; Huang R
    Brain Struct Funct; 2022 Jun; 227(5):1697-1710. PubMed ID: 35194657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of map orientation and generalisation on congestion decisions: a comparison of schematic-egocentric and topographic-allocentric maps.
    Crundall D; Crundall E; Burnett G; Shalloe S; Sharples S
    Ergonomics; 2011 Aug; 54(8):700-15. PubMed ID: 21846309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cognitive Mapping Without Vision: Comparing Wayfinding Performance After Learning From Digital Touchscreen-Based Multimodal Maps vs. Embossed Tactile Overlays.
    Giudice NA; Guenther BA; Jensen NA; Haase KN
    Front Hum Neurosci; 2020; 14():87. PubMed ID: 32256329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of visual map complexity on the attentional processing of landmarks.
    Keil J; Edler D; Kuchinke L; Dickmann F
    PLoS One; 2020; 15(3):e0229575. PubMed ID: 32119712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wayfinding in pairs: comparing the planning and navigation performance of dyads and individuals in a real-world environment.
    Bae C; Montello D; Hegarty M
    Cogn Res Princ Implic; 2024 Jun; 9(1):40. PubMed ID: 38902485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Childhood wayfinding experience explains sex and individual differences in adult wayfinding strategy and anxiety.
    Vieites V; Pruden SM; Reeb-Sutherland BC
    Cogn Res Princ Implic; 2020 Mar; 5(1):12. PubMed ID: 32185533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of different navigational aids on wayfinding and spatial memory for older adults.
    Ai L; Yang Y; Wang Q
    Psychol Aging; 2023 Nov; 38(7):670-683. PubMed ID: 37104785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path Learning From Navigation in Aging: The Role of Cognitive Functioning and Wayfinding Inclinations.
    Muffato V; De Beni R
    Front Hum Neurosci; 2020; 14():8. PubMed ID: 32047427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps.
    Lammert-Siepmann N; Bestgen AK; Edler D; Kuchinke L; Dickmann F
    PLoS One; 2017; 12(10):e0186065. PubMed ID: 29059237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Where are we going and where have we been? Examining the effects of maps on spatial learning in an indoor guided navigation task.
    Stites MC; Matzen LE; Gastelum ZN
    Cogn Res Princ Implic; 2020 Mar; 5(1):13. PubMed ID: 32198712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a conceptual framework for predicting navigation performance in virtual reality.
    Grübel J; Thrash T; Hölscher C; Schinazi VR
    PLoS One; 2017; 12(9):e0184682. PubMed ID: 28915266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wayfinding and Glaucoma: A Virtual Reality Experiment.
    Daga FB; Macagno E; Stevenson C; Elhosseiny A; Diniz-Filho A; Boer ER; Schulze J; Medeiros FA
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3343-3349. PubMed ID: 28687845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the landmark-route-survey framework to evaluate spatial knowledge obtained from synthetic vision systems.
    Lapeyre B; Hourlier S; Servantie X; N'Kaoua B; Sauzéon H
    Hum Factors; 2011 Dec; 53(6):647-61. PubMed ID: 22235527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining egoformative and alloformative cues in a novel tabletop navigation task.
    Starrett MJ; Huffman DJ; Ekstrom AD
    Psychol Res; 2023 Jul; 87(5):1644-1664. PubMed ID: 36181560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a picture (or a thousand words) for supporting spatial knowledge of a complex virtual environment.
    Jaeger AJ; Weisberg SM; Nazareth A; Newcombe NS
    Cogn Res Princ Implic; 2023 Jul; 8(1):48. PubMed ID: 37491633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.