BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34532515)

  • 1. CRISPR/Cas9-mediated ssDNA Recombineering in
    Liu J; Wang Y; Zheng P; Sun J
    Bio Protoc; 2018 Oct; 8(19):e3038. PubMed ID: 34532515
    [No Abstract]   [Full Text] [Related]  

  • 2. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum.
    Zhang J; Yang F; Yang Y; Jiang Y; Huo YX
    Microb Cell Fact; 2019 Mar; 18(1):60. PubMed ID: 30909908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Editing of Corynebacterium glutamicum Using CRISPR-Cpf1 System.
    Wen Z; Qian F; Zhang J; Jiang Y; Yang S
    Methods Mol Biol; 2022; 2479():189-206. PubMed ID: 35583740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in gene editing of Corynebacterium glutamate].
    Yang J; Ma X; Wang X; Zhang Z; Wang S; Qin H; Mao S; Lu F
    Sheng Wu Gong Cheng Xue Bao; 2020 May; 36(5):820-828. PubMed ID: 32567265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a DNA double-strand break-free base editing tool in
    Deng C; Lv X; Li J; Liu Y; Du G; Liu L
    Metab Eng Commun; 2020 Dec; 11():e00135. PubMed ID: 32577397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system.
    Peng F; Wang X; Sun Y; Dong G; Yang Y; Liu X; Bai Z
    Microb Cell Fact; 2017 Nov; 16(1):201. PubMed ID: 29137643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic investigation of CRISPR-Cas9 configurations for flexible and efficient genome editing in Corynebacterium glutamicum NRRL-B11474.
    Cameron Coates R; Blaskowski S; Szyjka S; van Rossum HM; Vallandingham J; Patel K; Serber Z; Dean J
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):187-201. PubMed ID: 30484125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case study of xylose conversion to glycolate in Corynebacterium glutamicum: Current limitation and future perspective of the CRISPR-Cas systems.
    Lee SS; Park J; Heo YB; Woo HM
    Enzyme Microb Technol; 2020 Jan; 132():109395. PubMed ID: 31731968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing recombineering in Corynebacterium glutamicum.
    Li C; Swofford CA; Rückert C; Sinskey AJ
    Biotechnol Bioeng; 2021 Jun; 118(6):2255-2264. PubMed ID: 33650120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Base Genome Editing in
    Kim HJ; Oh SY; Lee SJ
    J Microbiol Biotechnol; 2020 Oct; 30(10):1583-1591. PubMed ID: 32807756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triple deletion of clpC, porB, and mepA enhances production of small ubiquitin-like modifier-N-terminal pro-brain natriuretic peptide in Corynebacterium glutamicum.
    Peng F; Liu X; Wang X; Chen J; Liu M; Yang Y; Bai Z
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):67-79. PubMed ID: 30357503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 18. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.
    Cho JS; Choi KR; Prabowo CPS; Shin JH; Yang D; Jang J; Lee SY
    Metab Eng; 2017 Jul; 42():157-167. PubMed ID: 28649005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 20. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum.
    Wang Y; Liu Y; Li J; Yang Y; Ni X; Cheng H; Huang T; Guo Y; Ma H; Zheng P; Wang M; Sun J; Ma Y
    Biotechnol Bioeng; 2019 Nov; 116(11):3016-3029. PubMed ID: 31317533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.