These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34532515)

  • 21. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri.
    Oh JH; van Pijkeren JP
    Nucleic Acids Res; 2014; 42(17):e131. PubMed ID: 25074379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 23. Identification of the EH CRISPR-Cas9 system on a metagenome and its application to genome engineering.
    Esquerra-Ruvira B; Baquedano I; Ruiz R; Fernandez A; Montoliu L; Mojica FJM
    Microb Biotechnol; 2023 Jul; 16(7):1505-1523. PubMed ID: 37097160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas12a Mediated Genome Editing To Introduce Amino Acid Substitutions into the Mechanosensitive Channel MscCG of
    Krumbach K; Sonntag CK; Eggeling L; Marienhagen J
    ACS Synth Biol; 2019 Dec; 8(12):2726-2734. PubMed ID: 31790583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice].
    Xin GW; Hu XX; Wang KJ; Wang XC
    Yi Chuan; 2018 Dec; 40(12):1112-1119. PubMed ID: 30559100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced production of D-pantothenic acid in Corynebacterium glutamicum using an efficient CRISPR-Cpf1 genome editing method.
    Su R; Wang T; Bo T; Cai N; Yuan M; Wu C; Jiang H; Peng H; Chen N; Li Y
    Microb Cell Fact; 2023 Jan; 22(1):3. PubMed ID: 36609377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Optimization of base editing in Corynebacterium glutamicum].
    Li J; Liu Y; Wang Y; Yu P; Zheng P; Wang M
    Sheng Wu Gong Cheng Xue Bao; 2020 Jan; 36(1):143-151. PubMed ID: 32072789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Establishment of CRISPR-Cpf1-assisted gene editing tool and engineering of 4-hydroxyisoleucine biosynthesis in Corynebacterium glutamicum.
    Chen R; Shi F; Xiang Y; Lai W; Ji G
    World J Microbiol Biotechnol; 2023 Aug; 39(10):266. PubMed ID: 37524856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium
    Walker JE; Lanahan AA; Zheng T; Toruno C; Lynd LR; Cameron JC; Olson DG; Eckert CA
    Metab Eng Commun; 2020 Jun; 10():e00116. PubMed ID: 31890588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Optimization of CRISPR/Cas9-based multiplex base editing in
    Lu H; Zhang Q; Yu S; Wang Y; Kang M; Han S; Liu Y; Wang M
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):780-795. PubMed ID: 35234398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SpRY: Engineered CRISPR/Cas9 Harnesses New Genome-Editing Power.
    Zhang D; Zhang B
    Trends Genet; 2020 Aug; 36(8):546-548. PubMed ID: 32456805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum.
    Yao C; Hu X; Wang X
    AMB Express; 2021 May; 11(1):70. PubMed ID: 34009533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of CRISPR-Cas9 through promoter replacement and efficient production of L-homoserine in Corynebacterium glutamicum.
    Li N; Wang M; Yu S; Zhou J
    Biotechnol J; 2021 Aug; 16(8):e2100093. PubMed ID: 34018325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Advances in Genome Editing Using CRISPR/Cas9.
    Ding Y; Li H; Chen LL; Xie K
    Front Plant Sci; 2016; 7():703. PubMed ID: 27252719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis.
    Sun B; Yang J; Yang S; Ye RD; Chen D; Jiang Y
    Biotechnol J; 2018 Sep; 13(9):e1700588. PubMed ID: 30039929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.