BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34532633)

  • 1. Crop modeling defines opportunities and challenges for drought escape, water capture, and yield increase using chilling-tolerant sorghum.
    Raymundo R; Sexton-Bowser S; Ciampitti IA; Morris GP
    Plant Direct; 2021 Sep; 5(9):e349. PubMed ID: 34532633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop modeling suggests limited transpiration would increase yield of sorghum across drought-prone regions of the United States.
    Raymundo R; Mclean G; Sexton-Bowser S; Lipka AE; Morris GP
    Front Plant Sci; 2023; 14():1283339. PubMed ID: 38348164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested Association Mapping Population.
    Marla SR; Burow G; Chopra R; Hayes C; Olatoye MO; Felderhoff T; Hu Z; Raymundo R; Perumal R; Morris GP
    G3 (Bethesda); 2019 Dec; 9(12):4045-4057. PubMed ID: 31611346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomics and phenomics enabled prebreeding improved early-season chilling tolerance in Sorghum.
    Marla S; Felderhoff T; Hayes C; Perumal R; Wang X; Poland J; Morris GP
    G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37232400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel QTL for chilling tolerance at germination and early seedling stages in sorghum.
    La Borde N; Rajewski J; Dweikat I
    Front Genet; 2023; 14():1129460. PubMed ID: 37007950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.
    Truong SK; McCormick RF; Mullet JE
    Front Plant Sci; 2017; 8():335. PubMed ID: 28377779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Temporal and spatial change of climate resources and meteorological disasters under climate change during winter crop growing season in Guangdong Province, China.].
    Wang H; Chen HH; Tang LS; Wang JH; Tang HY
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):93-102. PubMed ID: 29692017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise colocalization of sorghum's major chilling tolerance locus with Tannin1 due to tight linkage drag rather than antagonistic pleiotropy.
    Schuh A; Felderhoff TJ; Marla S; Morris GP
    Theor Appl Genet; 2024 Feb; 137(2):42. PubMed ID: 38308687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Genomic Regions Associated with Seedling Frost Tolerance in Sorghum.
    Borde N; Dweikat I
    Genes (Basel); 2023 Nov; 14(12):. PubMed ID: 38136939
    [No Abstract]   [Full Text] [Related]  

  • 10. Seed-to-seed early-season cold resiliency in sorghum.
    Emendack Y; Sanchez J; Hayes C; Nesbitt M; Laza H; Burke J
    Sci Rep; 2021 Apr; 11(1):7801. PubMed ID: 33833364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Transcriptome and Lipidome Analyses Reveal Molecular Chilling Responses in Chilling-Tolerant Sorghums.
    Marla SR; Shiva S; Welti R; Liu S; Burke JJ; Morris GP
    Plant Genome; 2017 Nov; 10(3):. PubMed ID: 29293808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum.
    Moghimi N; Desai JS; Bheemanahalli R; Impa SM; Vennapusa AR; Sebela D; Perumal R; Doherty CJ; Jagadish SVK
    J Exp Bot; 2019 Jun; 70(12):3357-3371. PubMed ID: 30949711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nematode population changes and forage yields of six corn and sorghum cultivars.
    McSorley R; Gallaher RN
    J Nematol; 1991 Oct; 23(4S):673-7. PubMed ID: 19283183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The shifting influence of drought and heat stress for crops in northeast Australia.
    Lobell DB; Hammer GL; Chenu K; Zheng B; McLean G; Chapman SC
    Glob Chang Biol; 2015 Nov; 21(11):4115-27. PubMed ID: 26152643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yield and Quality in Main and Ratoon Crops of Grain Sorghum Under Different Nitrogen Rates and Planting Densities.
    Zhou Y; Huang J; Li Z; Wu Y; Zhang J; Zhang Y
    Front Plant Sci; 2021; 12():778663. PubMed ID: 35095955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Planting Date on Melanaphis sacchari (Hemiptera: Aphididae) Population Dynamics and Grain Sorghum Yield.
    Seiter NJ; Miskelley AD; Lorenz GM; Joshi NK; Studebaker GE; Kelley JP
    J Econ Entomol; 2019 Dec; 112(6):2731-2736. PubMed ID: 31504628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering Planting Date to Manage Melanaphis sacchari (Hemiptera: Aphididae) Populations in Sweet Sorghum.
    Mercer NH; Obrycki JJ; Bessin RT
    J Econ Entomol; 2021 Feb; 114(1):197-200. PubMed ID: 33558907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns.
    Borrell AK; van Oosterom EJ; Mullet JE; George-Jaeggli B; Jordan DR; Klein PE; Hammer GL
    New Phytol; 2014 Aug; 203(3):817-30. PubMed ID: 24898064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress.
    Abreha KB; Enyew M; Carlsson AS; Vetukuri RR; Feyissa T; Motlhaodi T; Ng'uni D; Geleta M
    Planta; 2021 Dec; 255(1):20. PubMed ID: 34894286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.