These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34532633)

  • 21. Distinct Preflowering Drought Tolerance Strategies of
    Ogden AJ; Abdali S; Engbrecht KM; Zhou M; Handakumbura PP
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forages and Pastures Symposium: development of and field experience with drought-tolerant maize.
    Soderlund S; Owens FN; Fagan C
    J Anim Sci; 2014 Jul; 92(7):2823-31. PubMed ID: 24496836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environment Characterization in Sorghum (
    Carcedo AJP; Mayor L; Demarco P; Morris GP; Lingenfelser J; Messina CD; Ciampitti IA
    Front Plant Sci; 2022; 13():768610. PubMed ID: 35310654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions.
    Kamali S; Mehraban A
    PLoS One; 2020; 15(12):e0243824. PubMed ID: 33370318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in Whole-Plant Metabolism during the Grain-Filling Stage in Sorghum Grown under Elevated CO2 and Drought.
    De Souza AP; Cocuron JC; Garcia AC; Alonso AP; Buckeridge MS
    Plant Physiol; 2015 Nov; 169(3):1755-65. PubMed ID: 26336093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench).
    Sanchez AC; Subudhi PK; Rosenow DT; Nguyen HT
    Plant Mol Biol; 2002; 48(5-6):713-26. PubMed ID: 11999845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide association studies identify putative pleiotropic locus mediating drought tolerance in sorghum.
    Maina F; Harou A; Hamidou F; Morris GP
    Plant Direct; 2022 Jun; 6(6):e413. PubMed ID: 35774626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. APSIM-based modeling approach to understand sorghum production environments in Mali.
    Diancoumba M; Kholová J; Adam M; Famanta M; Clerget B; Traore PCS; Weltzien E; Vacksmann M; McLean G; Hammer GL; van Oosterom EJ; Vadez V
    Agron Sustain Dev; 2024; 44(3):25. PubMed ID: 38660316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SbNAC9 Improves Drought Tolerance by Enhancing Scavenging Ability of Reactive Oxygen Species and Activating Stress-Responsive Genes of Sorghum.
    Jin X; Zheng Y; Wang J; Chen W; Yang Z; Chen Y; Yang Y; Lu G; Sun B
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Planting Dates and Climatic Factors on the Incidence and Severity of Sorghum Grain Mold in Morelos, Mexico.
    Montes-Belmont R; Méndez-Ramírez I; Flores-Moctezuma HE; Nava-Juárez RA
    Plant Dis; 2003 Sep; 87(9):1139-1143. PubMed ID: 30812832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorghum: A Multipurpose Crop.
    Zheng H; Dang Y; Sui N
    J Agric Food Chem; 2023 Nov; 71(46):17570-17583. PubMed ID: 37933850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling adaptation of sorghum in Ethiopia with APSIM-opportunities with G×E×M.
    Tirfessa A; Getachew F; McLean G; van Oosterom E; Jordan D; Hammer G
    Agron Sustain Dev; 2023; 43(1):15. PubMed ID: 36714044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mixed cropping has the potential to enhance flood tolerance of drought-adapted grain crops.
    Iijima M; Awala SK; Watanabe Y; Kawato Y; Fujioka Y; Yamane K; Wada KC
    J Plant Physiol; 2016 Mar; 192():21-5. PubMed ID: 26803216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches.
    Prasad VBR; Govindaraj M; Djanaguiraman M; Djalovic I; Shailani A; Rawat N; Singla-Pareek SL; Pareek A; Prasad PVV
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitroxin and arbuscular mycorrhizal fungi alleviate negative effects of drought stress on
    Kamali S; Mehraban A
    Plant Signal Behav; 2020 Nov; 15(11):1813998. PubMed ID: 32902363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought.
    Spindel JE; Dahlberg J; Colgan M; Hollingsworth J; Sievert J; Staggenborg SH; Hutmacher R; Jansson C; Vogel JP
    BMC Genomics; 2018 Sep; 19(1):679. PubMed ID: 30223789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of grain sorghum hybrids under drought stress using GGE biplot analyses.
    Batista PSC; Menezes CB; Carvalho AJ; Portugal AF; Bastos EA; Cardoso MJ; Santos CV; Julio MPM
    Genet Mol Res; 2017 Sep; 16(3):. PubMed ID: 28973741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling the effect of plant water use traits on yield and stay-green expression in sorghum.
    Kholová J; Murugesan T; Kaliamoorthy S; Malayee S; Baddam R; Hammer GL; McLean G; Deshpande S; Hash CT; Craufurd PQ; Vadez V
    Funct Plant Biol; 2014 Oct; 41(11):1019-1034. PubMed ID: 32481055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boron nutrition and chilling tolerance of warm climate crop species.
    Huang L; Ye Z; Bell RW; Dell B
    Ann Bot; 2005 Oct; 96(5):755-67. PubMed ID: 16033777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative and population genomics suggest a broad role of stay-green loci in the drought adaptation of sorghum.
    Faye JM; Akata EA; Sine B; Diatta C; Cisse N; Fonceka D; Morris GP
    Plant Genome; 2022 Mar; 15(1):e20176. PubMed ID: 34817118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.