These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34532802)

  • 21. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.
    Acharya PK; Patro SK
    Waste Manag Res; 2016 Aug; 34(8):764-74. PubMed ID: 27357563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Taguchi optimization of geopolymer concrete produced with rice husk ash and ceramic dust.
    Memiş S; Bılal MAM
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15876-15895. PubMed ID: 34633616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alkali-activated slag concrete with paper industry waste.
    Mavroulidou M; Shah S
    Waste Manag Res; 2021 Mar; 39(3):466-472. PubMed ID: 33535906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel applications of waste foundry sand in conventional and dry-mix concretes.
    Matos PR; Marcon MF; Schankoski RA; Prudêncio LR
    J Environ Manage; 2019 Aug; 244():294-303. PubMed ID: 31128334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radioactively contaminated electric arc furnace dust as an addition to the immobilization mortar in low- and medium-activity repositories.
    Castellote M; Menéndez E; Andrade C; Zuloaga P; Navarro M; Ordóñez M
    Environ Sci Technol; 2004 May; 38(10):2946-52. PubMed ID: 15212272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development in Sustainable Concrete with the Replacement of Fume Dust and Slag from the Steel Industry.
    Parron-Rubio ME; Kissi B; Perez-García F; Rubio-Cintas MD
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards zero industrial waste: Utilisation of brick dust waste in sustainable construction.
    Kinuthia JM; Nidzam RM
    Waste Manag; 2011 Aug; 31(8):1867-78. PubMed ID: 21550223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recycling of ceramic tiles waste and marble waste in sustainable production of concrete: a review.
    Mangi SA; Raza MS; Khahro SH; Qureshi AS; Kumar R
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):18311-18332. PubMed ID: 35015234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction model for the compressive strength of green concrete using cement kiln dust and fly ash.
    Bakhoum ES; Amir A; Osama F; Adel M
    Sci Rep; 2023 Feb; 13(1):1864. PubMed ID: 36726037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blasted copper slag as fine aggregate in Portland cement concrete.
    Dos Anjos MAG; Sales ATC; Andrade N
    J Environ Manage; 2017 Jul; 196():607-613. PubMed ID: 28355593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of cementitious alternatives within the development of environmental sustainability associated with cement replacement.
    Alghamdi H
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):42433-42451. PubMed ID: 35364790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concrete for Precast Blocks: Binary and Ternary Combination of Sewage Sludge Ash with Diverse Mineral Residue.
    Baeza-Brotons F; Payá J; Galao O; Alberti MG; Garcés P
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Upcycling of wastes for sustainable controlled low-strength material: A review on strength and excavatability.
    Kaliyavaradhan SK; Ling TC; Guo MZ
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):16799-16816. PubMed ID: 34993830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust.
    Al-Amoudi OSB; Al-Homidy AA; Maslehuddin M; Saleh TA
    Sci Rep; 2017 Apr; 7():46676. PubMed ID: 28452346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of local metakaolin developed from natural material soorh and coal bottom ash on fresh, hardened properties and embodied carbon of self-compacting concrete.
    Keerio MA; Saand A; Kumar A; Bheel N; Ali K
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):60000-60018. PubMed ID: 34151404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental Study on the Application of Cementless Material with Industrial By-Products to Steam-Cured Precast Concrete Products.
    Hata M; Sato M; Miyazawa S
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental Investigation on Mechanical and Thermal Properties of Concrete Using Waste Materials as an Aggregate Substitution.
    Sosoi G; Abid C; Barbuta M; Burlacu A; Balan MC; Branoaea M; Vizitiu RS; Rigollet F
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste.
    Mukharjee BB; Barai SV
    Waste Manag Res; 2015 Jun; 33(6):515-23. PubMed ID: 25986048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental investigation on water absorption capacity of RHA-added cement concrete.
    Balraj A; Jayaraman D; Krishnan J; Alex J
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63623-63628. PubMed ID: 33097994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of waste ash from palm oil industry in concrete.
    Tangchirapat W; Saeting T; Jaturapitakkul C; Kiattikomol K; Siripanichgorn A
    Waste Manag; 2007; 27(1):81-8. PubMed ID: 16497498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.