These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34532802)

  • 41. Destructive and Non-Destructive Testing of the Performance of Copper Slag Fiber-Reinforced Concrete.
    Chakrawarthi V; Dharmar B; Avudaiappan S; Amran M; Flores ES; Alam MA; Fediuk R; Vatin NI; Rashid RSM
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806661
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Life cycle assessment (LCA) of precast concrete blocks utilizing ground granulated blast furnace slag.
    Ali B; Ouni MHE; Kurda R
    Environ Sci Pollut Res Int; 2022 Nov; 29(55):83580-83595. PubMed ID: 35764735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Concretes and mortars with waste paper industry: Biomass ash and dregs.
    Martínez-Lage I; Velay-Lizancos M; Vázquez-Burgo P; Rivas-Fernández M; Vázquez-Herrero C; Ramírez-Rodríguez A; Martín-Cano M
    J Environ Manage; 2016 Oct; 181():863-873. PubMed ID: 27397843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strength and durability performance of modified cement-based concrete incorporated immobilized bacteria.
    Dhivakar Karthick M; Rampradheep GS; Shankar S
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21670-21681. PubMed ID: 34767176
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of unconfined compressive strength of cement paste containing industrial wastes.
    Stegemann JA; Buenfeld NR
    Waste Manag; 2003; 23(4):321-32. PubMed ID: 12781220
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of medium-density fiberboard wastes ash on calcium silicate hydrate crystal of concrete.
    Kazemi H; Faraj RH; Abdullah W; Shahbazpanahi S; Mosavi A
    J Air Waste Manag Assoc; 2023 Jan; 73(1):40-49. PubMed ID: 35905292
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ternary Blends for Self-Compacting Mortars Production Composed by Electric Arc Furnace Dust and Other Industrial by-Products.
    López-Uceda A; Cantador-Fernández D; Da Silva PR; de Brito J; Fernández-Rodríguez JM; Jiménez JR
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955290
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Performance of structural concrete using Waste-to-Energy (WTE) combined ash.
    Tian Y; Bourtsalas ACT; Kawashima S; Ma S; Themelis NJ
    Waste Manag; 2020 Dec; 118():180-189. PubMed ID: 32892094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Performance of Porous Slabs Using Recycled Ash.
    El-Sayed TA
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641135
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.
    Chowdhury S; Maniar A; Suganya OM
    J Adv Res; 2015 Nov; 6(6):907-13. PubMed ID: 26644928
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nondestructive Determination of Strength of Concrete Incorporating Industrial Wastes as Partial Replacement for Fine Aggregate.
    Odimegwu TC; Kaish ABMA; Zakaria I; Abood MM; Jamil M; Ngozi KO
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sustainability and mechanical property assessment of concrete incorporating eggshell powder and silica fume as binary and ternary cementitious materials.
    Sohu S; Bheel N; Jhatial AA; Ansari AA; Shar IA
    Environ Sci Pollut Res Int; 2022 Aug; 29(39):58685-58697. PubMed ID: 35366210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilization of Waste Polysilicon Sludge in Concrete.
    Qudoos A; Jeon IK; Kim SS; Lee JB; Kim HG
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935986
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A possible recycling method for high grade steels EAFD in polymer composites.
    Niubó M; Fernández AI; Chimenos JM; Haurie L
    J Hazard Mater; 2009 Nov; 171(1-3):1139-44. PubMed ID: 19632033
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recycling of Cement Industry Waste for Alkali-Activated Materials Production.
    Salamanova M; Murtazaev SA; Saidumov M; Alaskhanov A; Murtazaeva T; Fediuk R
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234004
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Sustainable Reuse of Agro-Industrial Wastes into Green Cement Bricks.
    Chin WQ; Lee YH; Amran M; Fediuk R; Vatin N; Kueh ABH; Lee YY
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268940
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical performance and environmental impact of normal strength concrete incorporating various levels of coconut fiber and recycled aggregates.
    Shah SHA; Amir MT; Ali B; El Ouni MH
    Environ Sci Pollut Res Int; 2022 Nov; 29(55):83636-83651. PubMed ID: 35767169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Waste-Based Pervious Concrete for Climate-Resilient Pavements.
    Ho HL; Huang R; Hwang LC; Lin WT; Hsu HM
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29861478
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparing Properties of Concrete Containing Electric Arc Furnace Slag and Granulated Blast Furnace Slag.
    Lee JY; Choi JS; Yuan TF; Yoon YS; Mitchell D
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predicting the strength of concrete made with stone dust and nylon fiber using artificial neural network.
    Ray S; Haque M; Ahmed T; Mita AF; Saikat MH; Alom MM
    Heliyon; 2022 Mar; 8(3):e09129. PubMed ID: 35345396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.