These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34532920)

  • 1. A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery.
    Dai C; Hu L; Jin X; Chen H; Zhang X; Zhang S; Song L; Ma H; Xu M; Zhao Y; Zhang Z; Cheng H; Qu L
    Adv Mater; 2021 Nov; 33(44):e2105480. PubMed ID: 34532920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binder-free Cu-supported Ag nanowires for aqueous rechargeable silver-zinc batteries with ultrahigh areal capacity.
    Zhang Y; Li X; Cheng Y; Tan W; Huang X
    J Colloid Interface Sci; 2021 Mar; 586():47-55. PubMed ID: 33162035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tellurium-Boosted High-Areal-Capacity Zinc-Sulfur Battery.
    Zhang Y; Amardeep A; Wu Z; Tao L; Xu J; Freschi DJ; Liu J
    Adv Sci (Weinh); 2024 Jun; 11(23):e2308580. PubMed ID: 38566441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mn
    Wu J; Huang J; Chi X; Yang J; Liu Y
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53627-53635. PubMed ID: 36417686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Temperature High-Areal-Capacity Rechargeable Potassium-Metal Batteries.
    Chen J; Yu D; Zhu Q; Liu X; Wang J; Chen W; Ji R; Qiu K; Guo L; Wang H
    Adv Mater; 2022 Sep; 34(36):e2205678. PubMed ID: 35853459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of Zn-Ag and Zn-Air Batteries: A Hybrid Battery with the Advantages of Both.
    Tan P; Chen B; Xu H; Cai W; He W; Zhang H; Liu M; Shao Z; Ni M
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36873-36881. PubMed ID: 30284815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High-Energy Aqueous All-Sulfur Battery.
    Wang H; Bi S; Zhang Y; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202317825. PubMed ID: 38238258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Reversible Cuprous Mediated Cathode Chemistry for Magnesium Batteries.
    Cheng X; Zhang Z; Kong Q; Zhang Q; Wang T; Dong S; Gu L; Wang X; Ma J; Han P; Lin HJ; Chen CT; Cui G
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11477-11482. PubMed ID: 32277864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading.
    Lu S; Chen Y; Wu X; Wang Z; Li Y
    Sci Rep; 2014 Apr; 4():4629. PubMed ID: 24717445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Voltage Rechargeable Alkali-Acid Zn-PbO
    Xu Y; Cai P; Chen K; Ding Y; Chen L; Chen W; Wen Z
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23593-23597. PubMed ID: 32931131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functioning Mechanism of the Secondary Aqueous Zn-β-MnO
    Li L; Hoang TKA; Zhi J; Han M; Li S; Chen P
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12834-12846. PubMed ID: 32091201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring short-chain sulfur molecules to drive redox dynamics for sulfur-based aqueous battery.
    Miao Z; Xu J; Xu C; Zhang J; Liu Y; Wanyan B; Yu H; Yan L; Zhang L; Shu J
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2307646120. PubMed ID: 37579150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Generated Li
    Yan H; Wang H; Wang D; Li X; Gong Z; Yang Y
    Nano Lett; 2019 May; 19(5):3280-3287. PubMed ID: 31009570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Kinetics Design for Solid-State Battery Device.
    Wang Y; Li X
    Adv Mater; 2024 Apr; 36(15):e2309306. PubMed ID: 38219042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rechargeable Aluminium-Sulfur Battery with Improved Electrochemical Performance by Cobalt-Containing Electrocatalyst.
    Guo Y; Hu Z; Wang J; Peng Z; Zhu J; Ji H; Wan LJ
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22963-22967. PubMed ID: 32830352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper Activation Enabling Reversible Aqueous Cu-ZnS Battery Chemistry.
    Yao C; Cheng J; Ma C; Tang Z; Ou Y; Liu L
    Chemistry; 2023 May; 29(28):e202300331. PubMed ID: 36853088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D Nitrogen-Doped Graphene/TiN Nanowires Composite as a Strong Polysulfide Anchor for Lithium-Sulfur Batteries with Enhanced Rate Performance and High Areal Capacity.
    Li Z; He Q; Xu X; Zhao Y; Liu X; Zhou C; Ai D; Xia L; Mai L
    Adv Mater; 2018 Nov; 30(45):e1804089. PubMed ID: 30259567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.