These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34533023)

  • 1. Self-Assembled Biophotonic Lasing Network Driven by Amyloid Fibrils in Microcavities.
    Gong C; Qiao Z; Zhu S; Wang W; Chen YC
    ACS Nano; 2021 Sep; 15(9):15007-15016. PubMed ID: 34533023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological Encoded Vector Beams for Monitoring Amyloid-Lipid Interactions in Microcavity.
    Gong C; Qiao Z; Yuan Z; Huang SH; Wang W; Wu PC; Chen YC
    Adv Sci (Weinh); 2021 Jun; 8(12):2100096. PubMed ID: 34194941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Self-Switchable Microlaser.
    Zhang Y; Gong X; Yuan Z; Wang W; Chen YC
    ACS Nano; 2020 Nov; 14(11):16122-16130. PubMed ID: 33135892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lasing by driven atoms-cavity system in collective strong coupling regime.
    Sawant R; Rangwala SA
    Sci Rep; 2017 Sep; 7(1):11432. PubMed ID: 28900221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable self-assembled Casimir microcavities and polaritons.
    Munkhbat B; Canales A; Küçüköz B; Baranov DG; Shegai TO
    Nature; 2021 Sep; 597(7875):214-219. PubMed ID: 34497392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direction-Adjustable Single-Mode Lasing via Self-Assembly 3D-Curved Microcavities for Gas Sensing.
    Zhang S; Liang N; Shi X; Zhao W; Zhai T
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45916-45923. PubMed ID: 34541849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities.
    Wang W; Zhou C; Zhang T; Chen J; Liu S; Fan X
    Lab Chip; 2015 Oct; 15(19):3862-9. PubMed ID: 26304622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry-Programmable Perovskite Microlaser Patterns for Two-Dimensional Optical Encryption.
    Wang K; Liang J; Chen R; Gao Z; Zhang C; Yan Y; Yao J; Zhao YS
    Nano Lett; 2021 Aug; 21(16):6792-6799. PubMed ID: 34398615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of random lasing to Fabry-Perot lasing: observation of high temperature lasing from carbon dots.
    Ni Y; Li X; Liang W; Zhang S; Xu X; Li Z; Li L; Shao Y; Ruan S; Zhang W
    Nanoscale; 2021 Apr; 13(16):7566-7573. PubMed ID: 33881119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic Micro/Nanoscale Lasers.
    Zhang W; Yao J; Zhao YS
    Acc Chem Res; 2016 Sep; 49(9):1691-700. PubMed ID: 27560390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-β supramolecular networks.
    Hiew SH; Guerette PA; Zvarec OJ; Phillips M; Zhou F; Su H; Pervushin K; Orner BP; Miserez A
    Acta Biomater; 2016 Dec; 46():41-54. PubMed ID: 27693688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lasing from lead halide perovskite semiconductor microcavity system.
    Wang J; Da P; Zhang Z; Luo S; Liao L; Sun Z; Shen X; Wu S; Zheng G; Chen Z
    Nanoscale; 2018 Jun; 10(22):10371-10376. PubMed ID: 29809212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low Threshold Fabry-Pérot Mode Lasing from Lead Iodide Trapezoidal Nanoplatelets.
    Zhong Y; Wei Q; Liu Z; Shang Q; Zhao L; Shao R; Zhang Z; Chen J; Du W; Shen C; Zhang J; Zhang Y; Gao P; Xing G; Liu X; Zhang Q
    Small; 2018 Aug; 14(35):e1801938. PubMed ID: 30066432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanogap Enabled Trajectory Splitting and 3D Optical Coupling in Self-Assembled Microtubular Cavities.
    Wang X; Yin Y; Dong H; Saggau CN; Tang M; Liu L; Tang H; Duan S; Ma L; Schmidt OG
    ACS Nano; 2021 Nov; 15(11):18411-18418. PubMed ID: 34767356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lasing in Bose-Fermi mixtures.
    Kochereshko VP; Durnev MV; Besombes L; Mariette H; Sapega VF; Askitopoulos A; Savenko IG; Liew TC; Shelykh IA; Platonov AV; Tsintzos SI; Hatzopoulos Z; Savvidis PG; Kalevich VK; Afanasiev MM; Lukoshkin VA; Schneider C; Amthor M; Metzger C; Kamp M; Hoefling S; Lagoudakis P; Kavokin A
    Sci Rep; 2016 Jan; 6():20091. PubMed ID: 26822483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity.
    Li J; Jiang M; Xu C; Wang Y; Lin Y; Lu J; Shi Z
    Sci Rep; 2015 Mar; 5():9263. PubMed ID: 25786359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-Programmable Microgel Lasers for Information Encoding and Anti-Counterfeiting.
    Gong X; Qiao Z; Liao Y; Zhu S; Shi L; Kim M; Chen YC
    Adv Mater; 2022 Mar; 34(10):e2107809. PubMed ID: 34918404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-threshold organic lasing from a square optical microcavity fabricated by imaging holography.
    Huang W; Liu YH; Li K; Ye Y; Xiao D; Chen L; Zheng ZG; Liu YJ
    Opt Express; 2019 Apr; 27(7):10022-10033. PubMed ID: 31045149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pure Metal-Organic Framework Microlasers with Controlled Cavity Shapes.
    Lv Y; Xiong Z; Dong H; Wei C; Yang Y; Ren A; Yao Z; Li Y; Xiang S; Zhang Z; Zhao YS
    Nano Lett; 2020 Mar; 20(3):2020-2025. PubMed ID: 32083875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.