These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34533147)

  • 1. Spontaneous NaCl-doped ices I
    Conde MM; Rovere M; Gallo P
    Phys Chem Chem Phys; 2021 Oct; 23(40):22897-22911. PubMed ID: 34533147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous NaCl-doped ice at seawater conditions: focus on the mechanisms of ion inclusion.
    Conde MM; Rovere M; Gallo P
    Phys Chem Chem Phys; 2017 Apr; 19(14):9566-9574. PubMed ID: 28345716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of ices at 0 K: a test of water models.
    Aragones JL; Noya EG; Abascal JL; Vega C
    J Chem Phys; 2007 Oct; 127(15):154518. PubMed ID: 17949184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining the phase diagram of water from direct coexistence simulations: the phase diagram of the TIP4P/2005 model revisited.
    Conde MM; Gonzalez MA; Abascal JL; Vega C
    J Chem Phys; 2013 Oct; 139(15):154505. PubMed ID: 24160525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between ices Ih and Ic in homogeneous water freezing.
    Zaragoza A; Conde MM; Espinosa JR; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2015 Oct; 143(13):134504. PubMed ID: 26450320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Diagrams of TIP4P/2005, SPC/E, and TIP5P Water at High Pressure.
    Yagasaki T; Matsumoto M; Tanaka H
    J Phys Chem B; 2018 Aug; 122(31):7718-7725. PubMed ID: 30016105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric constant of ices and water: a lesson about water interactions.
    Aragones JL; MacDowell LG; Vega C
    J Phys Chem A; 2011 Jun; 115(23):5745-58. PubMed ID: 20866096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice I
    Sakti AW; Nishimura Y; Chou CP; Nakai H
    J Phys Chem A; 2018 Jan; 122(1):33-40. PubMed ID: 29227657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phase diagram of ice: a quasi-harmonic study based on a flexible water model.
    Ramírez R; Neuerburg N; Herrero CP
    J Chem Phys; 2013 Aug; 139(8):084503. PubMed ID: 24007014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radial distribution functions and densities for the SPC/E, TIP4P and TIP5P models for liquid water and ices Ih, Ic, II, III, IV, V, VI, VII, VIII, IX, XI and XII.
    Vega C; McBride C; Sanz E; Abascal JL
    Phys Chem Chem Phys; 2005 Apr; 7(7):1450-6. PubMed ID: 19787967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brine rejection and hydrate formation upon freezing of NaCl aqueous solutions.
    Tsironi I; Schlesinger D; Späh A; Eriksson L; Segad M; Perakis F
    Phys Chem Chem Phys; 2020 Apr; 22(14):7625-7632. PubMed ID: 32226993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.
    Aragones JL; Conde MM; Noya EG; Vega C
    Phys Chem Chem Phys; 2009 Jan; 11(3):543-55. PubMed ID: 19283272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing ice VII crystallization from amorphous NaCl-D
    Ludl AA; Bove LE; Corradini D; Saitta AM; Salanne M; Bull CL; Klotz S
    Phys Chem Chem Phys; 2017 Jan; 19(3):1875-1883. PubMed ID: 28009862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ice Ih vs. ice III along the homogeneous nucleation line.
    Espinosa JR; Diez AL; Vega C; Valeriani C; Ramirez J; Sanz E
    Phys Chem Chem Phys; 2019 Mar; 21(10):5655-5660. PubMed ID: 30793135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of ions accommodated in salty ice Ih crystals.
    Yashima Y; Okada Y; Harada M; Okada T
    Phys Chem Chem Phys; 2021 Sep; 23(33):17945-17952. PubMed ID: 34382049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Structure Prediction via Basin-Hopping Global Optimization Employing Tiny Periodic Simulation Cells, with Application to Water-Ice.
    Burnham CJ; English NJ
    J Chem Theory Comput; 2019 Jun; 15(6):3889-3900. PubMed ID: 31084025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model.
    Engstler J; Giovambattista N
    J Chem Phys; 2017 Aug; 147(7):074505. PubMed ID: 28830166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phase diagram of water at negative pressures: virtual ices.
    Conde MM; Vega C; Tribello GA; Slater B
    J Chem Phys; 2009 Jul; 131(3):034510. PubMed ID: 19624212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations.
    Sanchez-Burgos I; Tejedor AR; Vega C; Conde MM; Sanz E; Ramirez J; Espinosa JR
    J Chem Phys; 2022 Sep; 157(9):094503. PubMed ID: 36075712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices.
    Andersson O
    J Chem Phys; 2018 Sep; 149(12):124506. PubMed ID: 30278676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.