These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34533455)

  • 1. PARROT is a flexible recurrent neural network framework for analysis of large protein datasets.
    Griffith D; Holehouse AS
    Elife; 2021 Sep; 10():. PubMed ID: 34533455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flattening the curve-How to get better results with small deep-mutational-scanning datasets.
    Wirnsberger G; Pritišanac I; Oberdorfer G; Gruber K
    Proteins; 2024 Jul; 92(7):886-902. PubMed ID: 38501649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning.
    Chen YZ; Wang ZZ; Wang Y; Ying G; Chen Z; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34002774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
    Wang D; Zeng S; Xu C; Qiu W; Liang Y; Joshi T; Xu D
    Bioinformatics; 2017 Dec; 33(24):3909-3916. PubMed ID: 29036382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTransIPs: Identification of Phosphorylation Sites Enhanced by Protein PLM Embeddings.
    Xu Z; Zhong H; He B; Wang X; Lu T
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3762-3771. PubMed ID: 38483806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepSS2GO: protein function prediction from secondary structure.
    Song FV; Su J; Huang S; Zhang N; Li K; Ni M; Liao M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SECLAF: a webserver and deep neural network design tool for hierarchical biological sequence classification.
    Szalkai B; Grolmusz V
    Bioinformatics; 2018 Jul; 34(14):2487-2489. PubMed ID: 29490010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepLoc: prediction of protein subcellular localization using deep learning.
    Almagro Armenteros JJ; Sønderby CK; Sønderby SK; Nielsen H; Winther O
    Bioinformatics; 2017 Nov; 33(21):3387-3395. PubMed ID: 29036616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning and Its Applications in Biomedicine.
    Cao C; Liu F; Tan H; Song D; Shu W; Li W; Zhou Y; Bo X; Xie Z
    Genomics Proteomics Bioinformatics; 2018 Feb; 16(1):17-32. PubMed ID: 29522900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-Protein Interfaces: A Graph Neural Network Approach.
    Pancino N; Gallegati C; Romagnoli F; Bongini P; Bianchini M
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GOLabeler: improving sequence-based large-scale protein function prediction by learning to rank.
    You R; Zhang Z; Xiong Y; Sun F; Mamitsuka H; Zhu S
    Bioinformatics; 2018 Jul; 34(14):2465-2473. PubMed ID: 29522145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ProFET: Feature engineering captures high-level protein functions.
    Ofer D; Linial M
    Bioinformatics; 2015 Nov; 31(21):3429-36. PubMed ID: 26130574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method for predicting protein subcellular localization based on pseudo amino acid composition.
    Ma J; Gu H
    BMB Rep; 2010 Oct; 43(10):670-6. PubMed ID: 21034529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.