BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 34533605)

  • 1. Designing libraries for pooled CRISPR functional screens of long noncoding RNAs.
    Pulido-Quetglas C; Johnson R
    Mamm Genome; 2022 Jun; 33(2):312-327. PubMed ID: 34533605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome.
    Vemuri S; Srivastava R; Mir Q; Hashemikhabir S; Dong XC; Janga SC
    Methods; 2020 Jun; 178():104-113. PubMed ID: 31494246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens.
    Hart T; Tong AHY; Chan K; Van Leeuwen J; Seetharaman A; Aregger M; Chandrashekhar M; Hustedt N; Seth S; Noonan A; Habsid A; Sizova O; Nedyalkova L; Climie R; Tworzyanski L; Lawson K; Sartori MA; Alibeh S; Tieu D; Masud S; Mero P; Weiss A; Brown KR; Usaj M; Billmann M; Rahman M; Constanzo M; Myers CL; Andrews BJ; Boone C; Durocher D; Moffat J
    G3 (Bethesda); 2017 Aug; 7(8):2719-2727. PubMed ID: 28655737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale CRISPR pooled screens.
    Sanjana NE
    Anal Biochem; 2017 Sep; 532():95-99. PubMed ID: 27261176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CASPR, an analysis pipeline for single and paired guide RNA CRISPR screens, reveals optimal target selection for long non-coding RNAs.
    Bergadà-Pijuan J; Pulido-Quetglas C; Vancura A; Johnson R
    Bioinformatics; 2020 Mar; 36(6):1673-1680. PubMed ID: 31681950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries.
    Heigwer F; Zhan T; Breinig M; Winter J; Brügemann D; Leible S; Boutros M
    Genome Biol; 2016 Mar; 17():55. PubMed ID: 27013184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of an arrayed CRISPR-Cas9 library targeting epigenetic regulators: from high-content screens to in vivo assays.
    Henser-Brownhill T; Monserrat J; Scaffidi P
    Epigenetics; 2017; 12(12):1065-1075. PubMed ID: 29327641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging-based pooled CRISPR screening reveals regulators of lncRNA localization.
    Wang C; Lu T; Emanuel G; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10842-10851. PubMed ID: 31085639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Expression of Long Noncoding RNA Loci with CRISPR Interference.
    Stojic L
    Methods Mol Biol; 2020; 2161():1-16. PubMed ID: 32681501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guide RNA library-based CRISPR screens in plants: opportunities and challenges.
    Pan C; Li G; Bandyopadhyay A; Qi Y
    Curr Opin Biotechnol; 2023 Feb; 79():102883. PubMed ID: 36603502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPRlnc: a manually curated database of validated sgRNAs for lncRNAs.
    Chen W; Zhang G; Li J; Zhang X; Huang S; Xiang S; Hu X; Liu C
    Nucleic Acids Res; 2019 Jan; 47(D1):D63-D68. PubMed ID: 30285246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 to Silence Long Non-Coding RNAs.
    Rosenlund IA; Calin GA; Dragomir MP; Knutsen E
    Methods Mol Biol; 2021; 2348():175-187. PubMed ID: 34160807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.
    Doench JG; Fusi N; Sullender M; Hegde M; Vaimberg EW; Donovan KF; Smith I; Tothova Z; Wilen C; Orchard R; Virgin HW; Listgarten J; Root DE
    Nat Biotechnol; 2016 Feb; 34(2):184-191. PubMed ID: 26780180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries.
    Ong SH; Li Y; Koike-Yusa H; Yusa K
    Sci Rep; 2017 Aug; 7(1):7384. PubMed ID: 28785007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved design and analysis of CRISPR knockout screens.
    Chen CH; Xiao T; Xu H; Jiang P; Meyer CA; Li W; Brown M; Liu XS
    Bioinformatics; 2018 Dec; 34(23):4095-4101. PubMed ID: 29868757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pooled CRISPR Screens in Drosophila Cells.
    Viswanatha R; Brathwaite R; Hu Y; Li Z; Rodiger J; Merckaert P; Chung V; Mohr SE; Perrimon N
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e111. PubMed ID: 31763777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pooled CRISPR-Based Genetic Screens in Mammalian Cells.
    Chan K; Tong AHY; Brown KR; Mero P; Moffat J
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paired guide RNA CRISPR-Cas9 screening for protein-coding genes and lncRNAs involved in transdifferentiation of human B-cells to macrophages.
    Arnan C; Ullrich S; Pulido-Quetglas C; Nurtdinov R; Esteban A; Blanco-Fernandez J; Aparicio-Prat E; Johnson R; Pérez-Lluch S; Guigó R
    BMC Genomics; 2022 May; 23(1):402. PubMed ID: 35619054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens.
    Miles LA; Garippa RJ; Poirier JT
    FEBS J; 2016 Sep; 283(17):3170-80. PubMed ID: 27250066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.
    Aregger M; Chandrashekhar M; Tong AHY; Chan K; Moffat J
    Methods Mol Biol; 2019; 1869():169-188. PubMed ID: 30324523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.