These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 3453379)
21. [Asymptotic solutions of population dynamic equations]. Rustamov NA Biofizika; 2000; 45(4):700-3. PubMed ID: 11040980 [TBL] [Abstract][Full Text] [Related]
22. Population dynamics of intraguild predation in a lattice gas system. Wang Y; Wu H Math Biosci; 2015 Jan; 259():1-11. PubMed ID: 25447811 [TBL] [Abstract][Full Text] [Related]
23. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. González-Olivares E; González-Yañez B; Mena-Lorca J; Flores JD Math Biosci Eng; 2013 Apr; 10(2):345-67. PubMed ID: 23458304 [TBL] [Abstract][Full Text] [Related]
24. Bioeconomic harvesting of a prey-predator fishery. Das T; Mukherjee RN; Chaudhuri KS J Biol Dyn; 2009 Sep; 3(5):447-62. PubMed ID: 22880894 [TBL] [Abstract][Full Text] [Related]
25. Global stability results for a generalized Lotka-Volterra system with distributed delays. Applications to predator-prey and to epidemic systems. Beretta E; Capasso V; Rinaldi F J Math Biol; 1988; 26(6):661-88. PubMed ID: 3230365 [TBL] [Abstract][Full Text] [Related]
26. A note on exact solutions of two prey-predator equations. Burnside RR Bull Math Biol; 1982; 44(6):893-7. PubMed ID: 7159791 [No Abstract] [Full Text] [Related]
27. Stability and persistence in ODE models for populations with many stages. Fan G; Lou Y; Thieme HR; Wu J Math Biosci Eng; 2015 Aug; 12(4):661-86. PubMed ID: 25974341 [TBL] [Abstract][Full Text] [Related]
28. Global stability of prey-predator systems with predatory switching. Mukherjee D; Roy AB Biosystems; 1992; 27(3):171-8. PubMed ID: 1467460 [TBL] [Abstract][Full Text] [Related]
29. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays. Meng X; Chen L J Theor Biol; 2006 Dec; 243(4):562-74. PubMed ID: 16934297 [TBL] [Abstract][Full Text] [Related]
30. Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model. Pal D; Mahaptra GS; Samanta GP Math Biosci; 2013 Feb; 241(2):181-7. PubMed ID: 23219573 [TBL] [Abstract][Full Text] [Related]
31. A solution to the accelerated-predator-satiety Lotka-Volterra predator-prey problem using Boubaker polynomial expansion scheme. Dubey B; Zhao TG; Jonsson M; Rahmanov H J Theor Biol; 2010 May; 264(1):154-60. PubMed ID: 20109470 [TBL] [Abstract][Full Text] [Related]
32. Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response. He X; Zheng S J Math Biol; 2017 Jul; 75(1):239-257. PubMed ID: 27915430 [TBL] [Abstract][Full Text] [Related]
33. Dynamics analysis of a delayed reaction-diffusion predator-prey system with non-continuous threshold harvesting. Zhang X; Zhao H Math Biosci; 2017 Jul; 289():130-141. PubMed ID: 28529143 [TBL] [Abstract][Full Text] [Related]
35. Uniform persistence in a generalized prey-predator system with parasitic infection. Mukherjee D Biosystems; 1998 Aug; 47(3):149-55. PubMed ID: 9793627 [TBL] [Abstract][Full Text] [Related]
36. The diffusive Lotka-Volterra predator-prey system with delay. Al Noufaey KS; Marchant TR; Edwards MP Math Biosci; 2015 Dec; 270(Pt A):30-40. PubMed ID: 26471317 [TBL] [Abstract][Full Text] [Related]
37. Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. Meng XY; Qin NN; Huo HF J Biol Dyn; 2018 Dec; 12(1):342-374. PubMed ID: 29616595 [TBL] [Abstract][Full Text] [Related]
38. Effect of predator density dependent dispersal of prey on stability of a predator-prey system. Mchich R; Auger P; Poggiale JC Math Biosci; 2007 Apr; 206(2):343-56. PubMed ID: 16455112 [TBL] [Abstract][Full Text] [Related]
39. Combined harvesting of a stage structured prey-predator model incorporating cannibalism in competitive environment. Chakraborty K; Das K; Kar TK C R Biol; 2013 Jan; 336(1):34-45. PubMed ID: 23537768 [TBL] [Abstract][Full Text] [Related]
40. Extinction and permanence of a two-prey one-predator system with impulsive effect. Zhang Y; Liu B; Chen L Math Med Biol; 2003 Dec; 20(4):309-25. PubMed ID: 14969382 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]