These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34534004)

  • 1. Study of Ferrocyanide Adsorption onto Different Minerals as Prebiotic Chemistry Assays.
    Samulewski RB; Pintor BE; Ivashita FF; Paesano A; Zaia DAM
    Astrobiology; 2021 Sep; 21(9):1121-1136. PubMed ID: 34534004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Did Salts in Seawater Play an Important Role in the Adsorption of Molecules on Minerals in the Prebiotic Earth? The Case of the Adsorption of Thiocyanate onto Forsterite-91.
    Ferreira GW; Samulewski RB; Ivashita FF; Paesano A; Urbano A; Zaia DAM
    Orig Life Evol Biosph; 2023 Dec; 53(3-4):127-156. PubMed ID: 37676558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of iron-cyanide complexes on goethite in the presence of sulfate and desorption with phosphate and chloride.
    Rennert T; Mansfeldt T
    J Environ Qual; 2002; 31(3):745-51. PubMed ID: 12026077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of ferrocyanides in the prebiotic synthesis of α-amino acids.
    Ruiz-Bermejo M; Osuna-Esteban S; Zorzano MP
    Orig Life Evol Biosph; 2013 Jun; 43(3):191-206. PubMed ID: 23780697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetite Synthesis in the Presence of Cyanide or Thiocyanate under Prebiotic Chemistry Conditions.
    Samulewski RB; Gonçalves JM; Urbano A; da Costa ACS; Ivashita FF; Paesano A; Zaia DAM
    Life (Basel); 2020 Apr; 10(4):. PubMed ID: 32252332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Was ferrocyanide a prebiotic reagent?
    Keefe AD; Miller SL
    Orig Life Evol Biosph; 1996 Apr; 26(2):111-29. PubMed ID: 11536749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected Thiocyanate Adsorption onto Ferrihydrite Under Prebiotic Chemistry Conditions.
    Zaia DAM; de Carvalho PCG; Samulewski RB; de Carvalho Pereira R; Zaia CTBV
    Orig Life Evol Biosph; 2020 Jun; 50(1-2):57-76. PubMed ID: 32266585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of iron cyanide complexes onto clay minerals, manganese oxide, and soil.
    Kang DH; Schwab AP; Johnston CT; Banks MK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep; 45(11):1391-6. PubMed ID: 20665323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction, at Ambient Temperature and 80 °C, between Minerals and Artificial Seawaters Resembling the Present Ocean Composition and that of 4.0 Billion Years Ago.
    Carneiro CEA; Stabile AC; Gomes FP; da Costa ACS; Zaia CTBV; Zaia DAM
    Orig Life Evol Biosph; 2017 Sep; 47(3):323-343. PubMed ID: 27783188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of a soil enzyme on iron-cyanide complex speciation and mineral adsorption.
    Zimmerman AR; Kang DH; Ahn MY; Hyun S; Banks MK
    Chemosphere; 2008 Jan; 70(6):1044-51. PubMed ID: 17845813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron- and Cyanide-Rich Early Earth Scenario.
    Burcar B; Castañeda A; Lago J; Daniel M; Pasek MA; Hud NV; Orlando TM; Menor-Salván C
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16981-16987. PubMed ID: 31460687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the adsorption of citric acid onto Muloorina illite and related clay minerals.
    Lackovic K; Johnson BB; Angove MJ; Wells JD
    J Colloid Interface Sci; 2003 Nov; 267(1):49-59. PubMed ID: 14554166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Favorable Environments for the Formation of Ferrocyanide, a Potentially Critical Reagent for Origins of Life.
    Todd ZR; Wogan NF; Catling DC
    ACS Earth Space Chem; 2024 Feb; 8(2):221-229. PubMed ID: 38379837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the Interchangeable Cations on the Sorption of Fumaric and Succinic Acids on Montmorillonite and its Relevance in Prebiotic Chemistry.
    Meléndez-López A; Colín-García M; Ortega-Gutiérrez F; Cruz-Castañeda J
    Orig Life Evol Biosph; 2021 Jun; 51(2):87-116. PubMed ID: 34251577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine, thiourea and thiocyanate interactions with clays: FT-IR, Mössbauer and EPR spectroscopy and X-ray diffractometry studies.
    de Santana H; Paesano A; da Costa AC; di Mauro E; de Souza IG; Ivashita FF; de Souza CM; Zaia CT; Zaia DA
    Amino Acids; 2010 Apr; 38(4):1089-99. PubMed ID: 19579002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenine Adsorbed onto Montmorillonite Exposed to Ionizing Radiation: Essays on Prebiotic Chemistry.
    Baú JPT; Villafañe-Barajas SA; da Costa ACS; Negrón-Mendoza A; Colín-Garcia M; Zaia DAM
    Astrobiology; 2020 Jan; 20(1):26-38. PubMed ID: 31549853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrocyanide adsorption on aluminum oxides.
    Bushey JT; Dzombak DA
    J Colloid Interface Sci; 2004 Apr; 272(1):46-51. PubMed ID: 14985021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-atomic scale hydrophobic/philic confinement of peptides on mineral surfaces by cross-correlated SPM and quantum mechanical DFT analysis.
    Moro D; Ulian G; ValdrÈ G
    J Microsc; 2020 Dec; 280(3):204-221. PubMed ID: 32458447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT.
    Kang S; Xing B
    Langmuir; 2007 Jun; 23(13):7024-31. PubMed ID: 17508766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retardation of iron-cyanide complexes in the soil of a former manufactured gas plant site.
    Sut M; Repmann F; Raab T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(3):282-91. PubMed ID: 25594121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.