These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 34534119)
1. Tio Ma S; Liu C; Xu Y; Tan Y; Yang D; Wang F; Ma L Water Sci Technol; 2021 Sep; 84(5):1228-1244. PubMed ID: 34534119 [TBL] [Abstract][Full Text] [Related]
2. Experimental and theoretical study of a new CDI device for the treatment of desulfurization wastewater. Liu C; Ma L; Xu Y; Wang F; Tan Y; Huang L; Ma S Environ Sci Pollut Res Int; 2022 Jan; 29(1):518-530. PubMed ID: 34331231 [TBL] [Abstract][Full Text] [Related]
3. Enhanced capacitive deionization properties of activated carbon doped with carbon nanotube-bridged molybdenum disulfide. Sun J; Li Y; Song H; Li H; Lai Q; Egabaierdi G; Li Q; Zhang S; He H; Li A Chemosphere; 2023 Jan; 310():136740. PubMed ID: 36209852 [TBL] [Abstract][Full Text] [Related]
4. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes. Dong Q; Wang G; Wu T; Peng S; Qiu J J Colloid Interface Sci; 2015 May; 446():373-8. PubMed ID: 25595622 [TBL] [Abstract][Full Text] [Related]
5. Enhanced performance of photocatalytic treatment of Congo red wastewater by CNTs-Ag-modified TiO Yang Y; Liu K; Sun F; Liu Y; Chen J Environ Sci Pollut Res Int; 2022 Mar; 29(11):15516-15525. PubMed ID: 34626335 [TBL] [Abstract][Full Text] [Related]
6. Anchoring chitosan/phytic acid complexes on polypyrrole nanotubes as capacitive deionization electrodes for uranium capture from wastewater. Zhao X; Chen D; Shi M; Zhao R Int J Biol Macromol; 2024 Jun; 270(Pt 2):132491. PubMed ID: 38763240 [TBL] [Abstract][Full Text] [Related]
7. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics. Li G; Cai W; Zhao R; Hao L Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403 [TBL] [Abstract][Full Text] [Related]
8. Capacitive deionization of a RO brackish water by AC/graphene composite electrodes. Chong LG; Chen PA; Huang JY; Huang HL; Wang HP Chemosphere; 2018 Jan; 191():296-301. PubMed ID: 29045931 [TBL] [Abstract][Full Text] [Related]
9. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Ma CY; Huang SC; Chou PH; Den W; Hou CH Chemosphere; 2016 Mar; 146():113-20. PubMed ID: 26714293 [TBL] [Abstract][Full Text] [Related]
10. Designed assembly of Ni/MAX (Ti Bharath G; Hai A; Rambabu K; Pazhanivel T; Hasan SW; Banat F Chemosphere; 2021 Mar; 266():129048. PubMed ID: 33248725 [TBL] [Abstract][Full Text] [Related]
11. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon. Bharath G; Hai A; Rambabu K; Ahmed F; Haidyrah AS; Ahmad N; Hasan SW; Banat F Environ Res; 2021 Jun; 197():111110. PubMed ID: 33864793 [TBL] [Abstract][Full Text] [Related]
12. Adsorption studies on the treatment of battery wastewater by purified carbon nanotubes (P-CNTs) and polyethylene glycol carbon nanotubes (PEG-CNTs). Hamzat WA; Abdulkareem AS; Bankole MT; Tijani JO; Kovo AS; Abubakre OK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(9):827-839. PubMed ID: 30964379 [TBL] [Abstract][Full Text] [Related]
13. N-Doping Carbon-Nanotube Membrane Electrodes Derived from Covalent Organic Frameworks for Efficient Capacitive Deionization. Ren L; Zhou J; Xiong S; Wang Y Langmuir; 2020 Oct; 36(40):12030-12037. PubMed ID: 32957785 [TBL] [Abstract][Full Text] [Related]
14. Effect of the chemical bond on the electrosorption and desorption of anions during capacitive deionization. Sun Z; Li Q; Chai L; Shu Y; Wang Y; Qiu D Chemosphere; 2019 Aug; 229():341-348. PubMed ID: 31078891 [TBL] [Abstract][Full Text] [Related]
15. Selective adsorption of phosphate by carboxyl-modified activated carbon electrodes for capacitive deionization. Miao L; Deng W; Chen X; Gao M; Chen W; Ao T Water Sci Technol; 2021 Oct; 84(7):1757-1773. PubMed ID: 34662311 [TBL] [Abstract][Full Text] [Related]
16. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Li H; Gao Y; Pan L; Zhang Y; Chen Y; Sun Z Water Res; 2008 Dec; 42(20):4923-8. PubMed ID: 18929385 [TBL] [Abstract][Full Text] [Related]
17. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480 [TBL] [Abstract][Full Text] [Related]
18. Facile synthesis of titania nanoparticles coated carbon nanotubes for selective enrichment of phosphopeptides for mass spectrometry analysis. Yan Y; Lu J; Deng C; Zhang X Talanta; 2013 Mar; 107():30-5. PubMed ID: 23598188 [TBL] [Abstract][Full Text] [Related]
19. Co-Co Hu X; Min X; Li X; Si M; Liu L; Zheng J; Yang W; Zhao F J Colloid Interface Sci; 2022 Jun; 616():389-400. PubMed ID: 35228044 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen-enriched micro-mesoporous carbon derived from polymers organic frameworks for high-performance capacitive deionization. Zhang J; Ning XA; Li D; Wang Y; Lai X; Ou W J Environ Sci (China); 2022 Jan; 111():282-291. PubMed ID: 34949358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]