These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34534350)

  • 1. TISMO: syngeneic mouse tumor database to model tumor immunity and immunotherapy response.
    Zeng Z; Wong CJ; Yang L; Ouardaoui N; Li D; Zhang W; Gu S; Zhang Y; Liu Y; Wang X; Fu J; Zhou L; Zhang B; Kim S; Yates KB; Brown M; Freeman GJ; Uppaluri R; Manguso R; Liu XS
    Nucleic Acids Res; 2022 Jan; 50(D1):D1391-D1397. PubMed ID: 34534350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment.
    Sun D; Wang J; Han Y; Dong X; Ge J; Zheng R; Shi X; Wang B; Li Z; Ren P; Sun L; Yan Y; Zhang P; Zhang F; Li T; Wang C
    Nucleic Acids Res; 2021 Jan; 49(D1):D1420-D1430. PubMed ID: 33179754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer.
    Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL
    Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domatinostat favors the immunotherapy response by modulating the tumor immune microenvironment (TIME).
    Bretz AC; Parnitzke U; Kronthaler K; Dreker T; Bartz R; Hermann F; Ammendola A; Wulff T; Hamm S
    J Immunother Cancer; 2019 Nov; 7(1):294. PubMed ID: 31703604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments.
    Yu JW; Bhattacharya S; Yanamandra N; Kilian D; Shi H; Yadavilli S; Katlinskaya Y; Kaczynski H; Conner M; Benson W; Hahn A; Seestaller-Wehr L; Bi M; Vitali NJ; Tsvetkov L; Halsey W; Hughes A; Traini C; Zhou H; Jing J; Lee T; Figueroa DJ; Brett S; Hopson CB; Smothers JF; Hoos A; Srinivasan R
    PLoS One; 2018; 13(11):e0206223. PubMed ID: 30388137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale public data reuse to model immunotherapy response and resistance.
    Fu J; Li K; Zhang W; Wan C; Zhang J; Jiang P; Liu XS
    Genome Med; 2020 Feb; 12(1):21. PubMed ID: 32102694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Selection of Syngeneic Preclinical Tumor Models for Immunotherapeutic Drug Discovery.
    Mosely SI; Prime JE; Sainson RC; Koopmann JO; Wang DY; Greenawalt DM; Ahdesmaki MJ; Leyland R; Mullins S; Pacelli L; Marcus D; Anderton J; Watkins A; Coates Ulrichsen J; Brohawn P; Higgs BW; McCourt M; Jones H; Harper JA; Morrow M; Valge-Archer V; Stewart R; Dovedi SJ; Wilkinson RW
    Cancer Immunol Res; 2017 Jan; 5(1):29-41. PubMed ID: 27923825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically engineered macrophages persist in solid tumors and locally deliver therapeutic proteins to activate immune responses.
    Brempelis KJ; Cowan CM; Kreuser SA; Labadie KP; Prieskorn BM; Lieberman NAP; Ene CI; Moyes KW; Chinn H; DeGolier KR; Matsumoto LR; Daniel SK; Yokoyama JK; Davis AD; Hoglund VJ; Smythe KS; Balcaitis SD; Jensen MC; Ellenbogen RG; Campbell JS; Pierce RH; Holland EC; Pillarisetty VG; Crane CA
    J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33115946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitization to immune checkpoint blockade through activation of a STAT1/NK axis in the tumor microenvironment.
    Zemek RM; De Jong E; Chin WL; Schuster IS; Fear VS; Casey TH; Forbes C; Dart SJ; Leslie C; Zaitouny A; Small M; Boon L; Forrest ARR; Muiri DO; Degli-Esposti MA; Millward MJ; Nowak AK; Lassmann T; Bosco A; Lake RA; Lesterhuis WJ
    Sci Transl Med; 2019 Jul; 11(501):. PubMed ID: 31316010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Immune Checkpoint Inhibitor Efficacy in Syngeneic Mouse Tumors in an Ex Vivo Immuno-Oncology Dynamic Environment.
    Doty DT; Schueler J; Mott VL; Bryan CM; Moore NF; Ho JC; Borenstein JT
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy.
    Xie G; Cheng T; Lin J; Zhang L; Zheng J; Liu Y; Xie G; Wang B; Yuan Y
    J Immunother Cancer; 2018 Sep; 6(1):88. PubMed ID: 30208943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies.
    Sanmamed MF; Chester C; Melero I; Kohrt H
    Ann Oncol; 2016 Jul; 27(7):1190-8. PubMed ID: 26912558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies.
    Mullins SR; Vasilakos JP; Deschler K; Grigsby I; Gillis P; John J; Elder MJ; Swales J; Timosenko E; Cooper Z; Dovedi SJ; Leishman AJ; Luheshi N; Elvecrog J; Tilahun A; Goodwin R; Herbst R; Tomai MA; Wilkinson RW
    J Immunother Cancer; 2019 Sep; 7(1):244. PubMed ID: 31511088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer.
    Pan Y; Lu F; Fei Q; Yu X; Xiong P; Yu X; Dang Y; Hou Z; Lin W; Lin X; Zhang Z; Pan M; Huang H
    J Hematol Oncol; 2019 Nov; 12(1):124. PubMed ID: 31771616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Tumor Immunology and Immunotherapy in Mice.
    Buqué A; Galluzzi L
    Trends Cancer; 2018 Sep; 4(9):599-601. PubMed ID: 30149876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy.
    Li B; Severson E; Pignon JC; Zhao H; Li T; Novak J; Jiang P; Shen H; Aster JC; Rodig S; Signoretti S; Liu JS; Liu XS
    Genome Biol; 2016 Aug; 17(1):174. PubMed ID: 27549193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CancerImmunityQTL: a database to systematically evaluate the impact of genetic variants on immune infiltration in human cancer.
    Tian J; Cai Y; Li Y; Lu Z; Huang J; Deng Y; Yang N; Wang X; Ying P; Zhang S; Zhu Y; Zhang H; Zhong R; Chang J; Miao X
    Nucleic Acids Res; 2021 Jan; 49(D1):D1065-D1073. PubMed ID: 33010176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner.
    Zhang QF; Li J; Jiang K; Wang R; Ge JL; Yang H; Liu SJ; Jia LT; Wang L; Chen BL
    Theranostics; 2020; 10(23):10619-10633. PubMed ID: 32929370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning on syngeneic mouse tumor profiles to model clinical immunotherapy response.
    Zeng Z; Gu SS; Wong CJ; Yang L; Ouardaoui N; Li D; Zhang W; Brown M; Liu XS
    Sci Adv; 2022 Oct; 8(41):eabm8564. PubMed ID: 36240281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental model of anti-PD-1 resistance exhibits activation of TGFß and Notch pathways and is sensitive to local mRNA immunotherapy.
    Bernardo M; Tolstykh T; Zhang YA; Bangari DS; Cao H; Heyl KA; Lee JS; Malkova NV; Malley K; Marquez E; Pollard J; Qu H; Roberts E; Ryan S; Singh K; Sun F; Wang E; Bahjat K; Wiederschain D; Wagenaar TR
    Oncoimmunology; 2021 Mar; 10(1):1881268. PubMed ID: 33796402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.