These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34534581)

  • 1. Corn starch modification during endogenous malt amylases: The impact of synergistic hydrolysis time of α-amylase and β-amylase and limit dextrinase.
    Gui Y; Zou F; Li J; Tang J; Guo L; Cui B
    Int J Biol Macromol; 2021 Nov; 190():819-826. PubMed ID: 34534581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Starch hydrolysis during mashing: A study of the activity and thermal inactivation kinetics of barley malt α-amylase and β-amylase.
    De Schepper CF; Michiels P; Buvé C; Van Loey AM; Courtin CM
    Carbohydr Polym; 2021 Mar; 255():117494. PubMed ID: 33436252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes.
    Jung YS; Lee BH; Yoo SH
    PLoS One; 2017; 12(7):e0181372. PubMed ID: 28727742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative assessment of the importance of barley seed alpha-amylase, beta-amylase, debranching enzyme, and alpha-glucosidase in starch degradation.
    Sun ZT; Henson CA
    Arch Biochem Biophys; 1991 Feb; 284(2):298-305. PubMed ID: 1824915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of the amylolytic enzymes and malt starch hydrolysates of two barley cultivars, Hokudai 1 (the first cultivar developed in Japan) and Kitanohoshi (currently used cultivar for beer production).
    Saburi W; Mori H
    Biosci Biotechnol Biochem; 2024 Sep; 88(10):1180-1187. PubMed ID: 38992276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic study on the thermal inactivation of barley malt α-amylase and β-amylase during the mashing process.
    De Schepper CF; Buvé C; Van Loey AM; Courtin CM
    Food Res Int; 2022 Jul; 157():111201. PubMed ID: 35761523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic hydrolysis of native granular starches by a new β-amylase from peanut (Arachis hypogaea).
    Das R; Kayastha AM
    Food Chem; 2019 Mar; 276():583-590. PubMed ID: 30409636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of structural and functional properties of maize starch produced with commercial or endogenous enzymes.
    Gui Y; Wei X; Yang N; Guo L; Cui B; Zou F; Lu L; Liu P; Fang Y
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2213-2225. PubMed ID: 35504411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of starch subjected to partial gelatinization and beta-amylolysis.
    Hickman BE; Janaswamy S; Yao Y
    J Agric Food Chem; 2009 Jan; 57(2):666-74. PubMed ID: 19154167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch.
    Chung HJ; Hoover R; Liu Q
    Int J Biol Macromol; 2009 Mar; 44(2):203-10. PubMed ID: 19136026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro digestibility of rice starch granules modified by β-amylase, transglucosidase and pullulanase.
    Li H; Li J; Xiao Y; Cui B; Fang Y; Guo L
    Int J Biol Macromol; 2019 Sep; 136():1228-1236. PubMed ID: 31228499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules.
    Guo L; Tao H; Cui B; Janaswamy S
    Food Chem; 2019 Mar; 277():504-514. PubMed ID: 30502177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis.
    Qin F; Man J; Xu B; Hu M; Gu M; Liu Q; Wei C
    J Agric Food Chem; 2011 Dec; 59(23):12667-73. PubMed ID: 22059442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches.
    Hoover R; Vasanthan T
    Carbohydr Res; 1994 Jan; 252():33-53. PubMed ID: 8137371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.
    Uthumporn U; Shariffa YN; Karim AA
    Appl Biochem Biotechnol; 2012 Mar; 166(5):1167-82. PubMed ID: 22203397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic and spectroscopic characterization of rice and corn starch.
    Govindaraju I; Pallen S; Umashankar S; Mal SS; Kaniyala Melanthota S; Mahato DR; Zhuo GY; Mahato KK; Mazumder N
    Microsc Res Tech; 2020 May; 83(5):490-498. PubMed ID: 32319189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of L-cysteine on starch and protein degradation during barley germination.
    Hu S; Qin Q; Zhang C; Yu J; Huang S; Liu J; Yang Z
    Biotechnol Lett; 2024 Oct; 46(5):861-870. PubMed ID: 38916822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch.
    Zhang H; Zhou X; He J; Wang T; Luo X; Wang L; Wang R; Chen Z
    Food Chem; 2017 Apr; 220():413-419. PubMed ID: 27855919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simplified method of determining the internal structure of amylopectin from barley starch without amylopectin isolation.
    Zhao X; Andersson M; Andersson R
    Carbohydr Polym; 2021 Mar; 255():117503. PubMed ID: 33436256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and chemical characterization of rice and potato starch granules using microscopy and spectroscopy.
    Kowsik PV; Mazumder N
    Microsc Res Tech; 2018 Dec; 81(12):1533-1540. PubMed ID: 30408275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.