These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 34534646)
1. Evaluation of deep learning approaches for modeling transcription factor sequence specificity. Zhang Y; Mo Q; Xue L; Luo J Genomics; 2021 Nov; 113(6):3774-3781. PubMed ID: 34534646 [TBL] [Abstract][Full Text] [Related]
2. Quantitative modeling of transcription factor binding specificities using DNA shape. Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564 [TBL] [Abstract][Full Text] [Related]
3. DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants. Wang M; Tai C; E W; Wei L Nucleic Acids Res; 2018 Jun; 46(11):e69. PubMed ID: 29617928 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of models in predicting the effects of SNPs on TF-DNA binding using large-scale in vitro and in vivo data. Han D; Li Y; Wang L; Liang X; Miao Y; Li W; Wang S; Wang Z Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38517697 [TBL] [Abstract][Full Text] [Related]
5. DeepTFactor: A deep learning-based tool for the prediction of transcription factors. Kim GB; Gao Y; Palsson BO; Lee SY Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372147 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism. Park S; Koh Y; Jeon H; Kim H; Yeo Y; Kang J Sci Rep; 2020 Aug; 10(1):13413. PubMed ID: 32770026 [TBL] [Abstract][Full Text] [Related]
7. DeepReg: a deep learning hybrid model for predicting transcription factors in eukaryotic and prokaryotic genomes. Ledesma-Dominguez L; Carbajal-Degante E; Moreno-Hagelsieb G; Pérez-Rueda E Sci Rep; 2024 Apr; 14(1):9155. PubMed ID: 38644393 [TBL] [Abstract][Full Text] [Related]
8. Cross-Cell-Type Prediction of TF-Binding Site by Integrating Convolutional Neural Network and Adversarial Network. Lan G; Zhou J; Xu R; Lu Q; Wang H Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336830 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities. Trabelsi A; Chaabane M; Ben-Hur A Bioinformatics; 2019 Jul; 35(14):i269-i277. PubMed ID: 31510640 [TBL] [Abstract][Full Text] [Related]
11. DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence. Deng L; Wu H; Liu X; Liu H Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073774 [TBL] [Abstract][Full Text] [Related]
12. Cross-Species Prediction of Transcription Factor Binding by Adversarial Training of a Novel Nucleotide-Level Deep Neural Network. Zhang Q; Wang S; Li Z; Pan Y; Huang DS Adv Sci (Weinh); 2024 Sep; 11(36):e2405685. PubMed ID: 39076052 [TBL] [Abstract][Full Text] [Related]
13. An Integrative Framework for Combining Sequence and Epigenomic Data to Predict Transcription Factor Binding Sites Using Deep Learning. Jing F; Zhang SW; Cao Z; Zhang S IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):355-364. PubMed ID: 30835229 [TBL] [Abstract][Full Text] [Related]
14. Locating transcription factor binding sites by fully convolutional neural network. Zhang Q; Wang S; Chen Z; He Y; Liu Q; Huang DS Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33498086 [TBL] [Abstract][Full Text] [Related]
15. BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning. Wang K; Zeng X; Zhou J; Liu F; Luan X; Wang X Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701417 [TBL] [Abstract][Full Text] [Related]
16. DEEP MOTIF DASHBOARD: VISUALIZING AND UNDERSTANDING GENOMIC SEQUENCES USING DEEP NEURAL NETWORKS. Lanchantin J; Singh R; Wang B; Qi Y Pac Symp Biocomput; 2017; 22():254-265. PubMed ID: 27896980 [TBL] [Abstract][Full Text] [Related]
17. A deep neural network approach for learning intrinsic protein-RNA binding preferences. Ben-Bassat I; Chor B; Orenstein Y Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078 [TBL] [Abstract][Full Text] [Related]
18. High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method. Zhang Y; Wang Z; Zeng Y; Zhou J; Zou Q Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34272562 [TBL] [Abstract][Full Text] [Related]
19. A survey on protein-DNA-binding sites in computational biology. Zhang Y; Bao W; Cao Y; Cong H; Chen B; Chen Y Brief Funct Genomics; 2022 Sep; 21(5):357-375. PubMed ID: 35652477 [TBL] [Abstract][Full Text] [Related]
20. A deep learning model to identify gene expression level using cobinding transcription factor signals. Zhang L; Yang Y; Chai L; Li Q; Liu J; Lin H; Liu L Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]