BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34534748)

  • 1. Brightness evaluation of pulsed electron gun using negative electron affinity photocathode developed for time-resolved measurement using scanning electron microscope.
    Morishita H; Ohshima T; Otsuga K; Kuwahara M; Agemura T; Ose Y
    Ultramicroscopy; 2021 Nov; 230():113386. PubMed ID: 34534748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond-laser-driven photoelectron-gun for time-resolved cathodoluminescence measurement of GaN.
    Onuma T; Kagamitani Y; Hazu K; Ishiguro T; Fukuda T; Chichibu SF
    Rev Sci Instrum; 2012 Apr; 83(4):043905. PubMed ID: 22559547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal resolution in transmission electron microscopy using a photoemission electron source.
    Kuwahara M; Agemura T
    Microscopy (Oxf); 2023 Apr; 72(2):97-110. PubMed ID: 36508300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed electron gun for electron diffraction at surfaces with femtosecond temporal resolution and high coherence length.
    Hafke B; Witte T; Brand C; Duden T; Horn-von Hoegen M
    Rev Sci Instrum; 2019 Apr; 90(4):045119. PubMed ID: 31042971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of an electron gun for a high-brightness X-ray generator.
    Sugimura T; Ohsawa S; Ikeda M
    J Synchrotron Radiat; 2008 May; 15(Pt 3):258-61. PubMed ID: 18421153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a time-resolved electron microscope with a Schottky field emission gun.
    Olshin PK; Drabbels M; Lorenz UJ
    Struct Dyn; 2020 Sep; 7(5):054304. PubMed ID: 33062804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-locking of oscillating images using laser-induced spin-polarized pulse TEM.
    Kuwahara M; Nambo Y; Kusunoki S; Jin X; Saitoh K; Asano H; Ujihara T; Takeda Y; Nakanishi T; Tanaka N
    Microscopy (Oxf); 2013 Dec; 62(6):607-14. PubMed ID: 23797969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beam brightness and its reduction in a 1.2-MV cold field-emission transmission electron microscope.
    Kawasaki T; Akashi T; Kasuya K; Shinada H
    Ultramicroscopy; 2019 Jul; 202():107-113. PubMed ID: 31005817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and characterization of the fringe field monochromator for a field emission gun.
    Mook HW; Kruit P
    Ultramicroscopy; 2000 Apr; 81(3-4):129-39. PubMed ID: 10782638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cryogenically cooled high voltage DC photoemission electron source.
    Lee H; Liu X; Cultrera L; Dunham B; Kostroun VO; Bazarov IV
    Rev Sci Instrum; 2018 Aug; 89(8):083303. PubMed ID: 30184700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a 300-kV gas environmental transmission electron microscope equipped with a cold field emission gun.
    Isakozawa S; Nagaoki I; Watabe A; Nagakubo Y; Saito N; Matsumoto H; Zhang XF; Taniguchi Y; Baba N
    Microscopy (Oxf); 2016 Aug; 65(4):353-62. PubMed ID: 27142511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of silicon-on-insulator direct electron detector with analog memories in pixels for sub-microsecond imaging.
    Ishida T; Sugie K; Miyoshi T; Ishida Y; Saitoh K; Arai Y; Kuwahara M
    Microscopy (Oxf); 2024 Jun; ():. PubMed ID: 38822660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum achievable beam brightness from photoinjectors.
    Bazarov IV; Dunham BM; Sinclair CK
    Phys Rev Lett; 2009 Mar; 102(10):104801. PubMed ID: 19392119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotip electron gun for the scanning electron microscope.
    Vladár AE; Radi Z; Postek MT; Joy DC
    Scanning; 2006; 28(3):133-41. PubMed ID: 16878784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun.
    Das P; Blazit JD; Tencé M; Zagonel LF; Auad Y; Lee YH; Ling XY; Losquin A; Colliex C; Stéphan O; García de Abajo FJ; Kociak M
    Ultramicroscopy; 2019 Aug; 203():44-51. PubMed ID: 31000482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cryogenically cooled 200 kV DC photoemission electron gun for ultralow emittance photocathodes.
    Gevorkyan G; Sarabia-Cardenas C; Kachwala A; Knill C; Hanks TJ; Bhattacharyya P; Li WH; Cultrera L; Galdi A; Bazarov I; Maxson J; Karkare S
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37702561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced drive laser system for a high-brightness continuous-wave photocathode electron gun.
    Wang T; Xu H; Liu Z; Zhang X; Liu J; Xu J; Feng L; Li J; Liu K; Huang S
    Opt Express; 2024 Mar; 32(6):9699-9709. PubMed ID: 38571198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution fluorescent bio-imaging with electron beam excitation.
    Kawata Y; Nawa Y; Inami W
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i16. PubMed ID: 25359807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new evaluation method of electron optical performance of high beam current probe forming systems.
    Fujita S; Shimoyama H
    J Electron Microsc (Tokyo); 2005 Oct; 54(5):413-27. PubMed ID: 16199441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and testing of a high perveance sheet beam electron gun.
    Smirnov AV; Agustsson R; Chao D; Gavryushkin D; Hoyt KJ; Shchegolkov D; Zavadtsev A
    Rev Sci Instrum; 2023 Apr; 94(4):. PubMed ID: 38081233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.