BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34535256)

  • 1. Accurate diagnosis of lung tissues for 2D Raman spectrogram by deep learning based on short-time Fourier transform.
    Qi Y; Yang L; Liu B; Liu L; Liu Y; Zheng Q; Liu D; Luo J
    Anal Chim Acta; 2021 Sep; 1179():338821. PubMed ID: 34535256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Precision Intelligent Cancer Diagnosis Method: 2D Raman Figures Combined with Deep Learning.
    Qi Y; Zhang G; Yang L; Liu B; Zeng H; Xue Q; Liu D; Zheng Q; Liu Y
    Anal Chem; 2022 May; 94(17):6491-6501. PubMed ID: 35271250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Assisted Neonatal Cry Classification
    K A; Vincent PMDR; Srinivasan K; Chang CY
    Front Public Health; 2021; 9():670352. PubMed ID: 34178926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-precision bladder cancer diagnosis method: 2D Raman spectrum figures based on maintenance technology combined with automatic weighted feature fusion network.
    Yang M; Wang J; Quan S; Xu Q
    Anal Chim Acta; 2023 Nov; 1282():341908. PubMed ID: 37923405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly accurate diagnosis of lung adenocarcinoma and squamous cell carcinoma tissues by deep learning.
    Qi Y; Yang L; Liu B; Liu L; Liu Y; Zheng Q; Liu D; Luo J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120400. PubMed ID: 34547683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolutional neural networks based efficient approach for classification of lung diseases.
    Demir F; Sengur A; Bajaj V
    Health Inf Sci Syst; 2020 Dec; 8(1):4. PubMed ID: 31915523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Model for Cosmetic Gel Classification Based on a Short-Time Fourier Transform and Spectrogram.
    Sim JH; Yoo J; Lee ML; Han SH; Han SK; Lee JY; Yi SW; Nam J; Kim DS; Yang YS
    ACS Appl Mater Interfaces; 2024 May; 16(20):25825-25835. PubMed ID: 38738662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonocardiogram transfer learning-based CatBoost model for diastolic dysfunction identification using multiple domain-specific deep feature fusion.
    Zheng Y; Guo X; Yang Y; Wang H; Liao K; Qin J
    Comput Biol Med; 2023 Apr; 156():106707. PubMed ID: 36871337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning networks for the recognition and quantitation of surface-enhanced Raman spectroscopy.
    Weng S; Yuan H; Zhang X; Li P; Zheng L; Zhao J; Huang L
    Analyst; 2020 Jul; 145(14):4827-4835. PubMed ID: 32515435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Raman Spectra by Using Deep Learning Methods in the Identification of Marine Pathogens.
    Yu S; Li X; Lu W; Li H; Fu YV; Liu F
    Anal Chem; 2021 Aug; 93(32):11089-11098. PubMed ID: 34339167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ECG quality assessment based on hand-crafted statistics and deep-learned S-transform spectrogram features.
    Liu G; Han X; Tian L; Zhou W; Liu H
    Comput Methods Programs Biomed; 2021 Sep; 208():106269. PubMed ID: 34298474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network.
    Ma D; Shang L; Tang J; Bao Y; Fu J; Yin J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 256():119732. PubMed ID: 33819758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-Asymmetry: Asymmetry Matrix Image for Deep Learning Method in Pre-Screening Depression.
    Kang M; Kwon H; Park JH; Kang S; Lee Y
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33203085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the learning mechanism of convolutional neural networks in spectral analysis.
    Zhang X; Xu J; Yang J; Chen L; Zhou H; Liu X; Li H; Lin T; Ying Y
    Anal Chim Acta; 2020 Jul; 1119():41-51. PubMed ID: 32439053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting atrial fibrillation by deep convolutional neural networks.
    Xia Y; Wulan N; Wang K; Zhang H
    Comput Biol Med; 2018 Feb; 93():84-92. PubMed ID: 29291535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. User identification system based on 2D CQT spectrogram of EMG with adaptive frequency resolution adjustment.
    Kim JM; Choi G; Pan S
    Sci Rep; 2024 Jan; 14(1):1340. PubMed ID: 38228733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid on-site identification of pesticide residues in tea by one-dimensional convolutional neural network coupled with surface-enhanced Raman scattering.
    Zhu J; Sharma AS; Xu J; Xu Y; Jiao T; Ouyang Q; Li H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118994. PubMed ID: 33038862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is it possible to detect cerebral dominance via EEG signals by using deep learning?
    Toraman S; Tuncer SA; Balgetir F
    Med Hypotheses; 2019 Oct; 131():109315. PubMed ID: 31443748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions.
    El-Khatib H; Popescu D; Ichim L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning.
    Ho CS; Jean N; Hogan CA; Blackmon L; Jeffrey SS; Holodniy M; Banaei N; Saleh AAE; Ermon S; Dionne J
    Nat Commun; 2019 Oct; 10(1):4927. PubMed ID: 31666527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.