BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 34535643)

  • 1. Activation mechanism of human soluble guanylate cyclase by stimulators and activators.
    Liu R; Kang Y; Chen L
    Nat Commun; 2021 Sep; 12(1):5492. PubMed ID: 34535643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic Effects of a Soluble Guanylate Cyclase Stimulator, Riociguat, and an Activator, Cinaciguat, During NO-Modulation in Healthy Pigs.
    Næsheim T; How OJ; Myrmel T
    J Cardiovasc Pharmacol Ther; 2021 Jan; 26(1):75-87. PubMed ID: 32662299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The soluble guanylate cyclase stimulator riociguat and the soluble guanylate cyclase activator cinaciguat exert no direct effects on contractility and relaxation of cardiac myocytes from normal rats.
    Reinke Y; Gross S; Eckerle LG; Hertrich I; Busch M; Busch R; Riad A; Rauch BH; Stasch JP; Dörr M; Felix SB
    Eur J Pharmacol; 2015 Nov; 767():1-9. PubMed ID: 26407652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chemistry and biology of soluble guanylate cyclase stimulators and activators.
    Follmann M; Griebenow N; Hahn MG; Hartung I; Mais FJ; Mittendorf J; Schäfer M; Schirok H; Stasch JP; Stoll F; Straub A
    Angew Chem Int Ed Engl; 2013 Sep; 52(36):9442-62. PubMed ID: 23963798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation.
    Hoffmann LS; Schmidt PM; Keim Y; Schaefer S; Schmidt HH; Stasch JP
    Br J Pharmacol; 2009 Jul; 157(5):781-95. PubMed ID: 19466990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine 135 of the β
    Rühle A; Elgert C; Hahn MG; Sandner P; Behrends S
    Eur J Pharmacol; 2020 Aug; 881():173203. PubMed ID: 32446711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NO-independent, haem-dependent soluble guanylate cyclase stimulators.
    Stasch JP; Hobbs AJ
    Handb Exp Pharmacol; 2009; (191):277-308. PubMed ID: 19089334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the mechanism of human soluble guanylate cyclase.
    Kang Y; Liu R; Wu JX; Chen L
    Nature; 2019 Oct; 574(7777):206-210. PubMed ID: 31514202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soluble guanylate cyclase stimulators and their potential use: a patent review.
    Sandner P; Vakalopoulos A; Hahn MG; Stasch JP; Follmann M
    Expert Opin Ther Pat; 2021 Mar; 31(3):203-222. PubMed ID: 33395323
    [No Abstract]   [Full Text] [Related]  

  • 10. Novel sGC Stimulators and sGC Activators for the Treatment of Heart Failure.
    Breitenstein S; Roessig L; Sandner P; Lewis KS
    Handb Exp Pharmacol; 2017; 243():225-247. PubMed ID: 27900610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel soluble guanylyl cyclase activator, BR 11257, acts as a non-stabilising partial agonist of sGC.
    Elgert C; Rühle A; Sandner P; Behrends S
    Biochem Pharmacol; 2019 May; 163():142-153. PubMed ID: 30753814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy.
    Horst BG; Yokom AL; Rosenberg DJ; Morris KL; Hammel M; Hurley JH; Marletta MA
    Elife; 2019 Sep; 8():. PubMed ID: 31566566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhaled nitric oxide to control platelet hyper-reactivity in patients with acute submassive pulmonary embolism.
    Kline JA; Puskarich MA; Pike JW; Zagorski J; Alves NJ
    Nitric Oxide; 2020 Mar; 96():20-28. PubMed ID: 31940502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the Molecular Mechanism of Human Soluble Guanylate Cyclase Activation by NO in vitro and in vivo.
    Pan J; Yuan H; Zhang X; Zhang H; Xu Q; Zhou Y; Tan L; Nagawa S; Huang ZX; Tan X
    Sci Rep; 2017 Feb; 7():43112. PubMed ID: 28230071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic Targeting of the Soluble Guanylate Cyclase.
    Makrynitsa GI; Zompra AA; Argyriou AI; Spyroulias GA; Topouzis S
    Curr Med Chem; 2019; 26(15):2730-2747. PubMed ID: 30621555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NO-independent regulatory site of direct sGC stimulators like YC-1 and BAY 41-2272.
    Becker EM; Alonso-Alija C; Apeler H; Gerzer R; Minuth T; Pleiss U; Schmidt P; Schramm M; Schröder H; Schroeder W; Steinke W; Straub A; Stasch JP
    BMC Pharmacol; 2001; 1():13. PubMed ID: 11801189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor.
    Montfort WR; Wales JA; Weichsel A
    Antioxid Redox Signal; 2017 Jan; 26(3):107-121. PubMed ID: 26979942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide-independent stimulation of soluble guanylate cyclase with BAY 41-2272 in cardiovascular disease.
    Boerrigter G; Burnett JC
    Cardiovasc Drug Rev; 2007; 25(1):30-45. PubMed ID: 17445086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational exploration of the binding mode of heme-dependent stimulators into the active catalytic domain of soluble guanylate cyclase.
    Agulló L; Buch I; Gutiérrez-de-Terán H; Garcia-Dorado D; Villà-Freixa J
    Proteins; 2016 Oct; 84(10):1534-48. PubMed ID: 27364190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fibrate gemfibrozil is a NO- and haem-independent activator of soluble guanylyl cyclase: in vitro studies.
    Sharina IG; Sobolevsky M; Papakyriakou A; Rukoyatkina N; Spyroulias GA; Gambaryan S; Martin E
    Br J Pharmacol; 2015 May; 172(9):2316-29. PubMed ID: 25536881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.