These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34535658)

  • 1. Promoter-proximal elongation regulates transcription in archaea.
    Blombach F; Fouqueau T; Matelska D; Smollett K; Werner F
    Nat Commun; 2021 Sep; 12(1):5524. PubMed ID: 34535658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of E. coli RNA polymerase transcription elongation complexes by selective photoelution from magnetic beads.
    Strobel EJ
    J Biol Chem; 2021 Jul; 297(1):100812. PubMed ID: 34023383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The primary σ factor in Escherichia coli can access the transcription elongation complex from solution in vivo.
    Goldman SR; Nair NU; Wells CD; Nickels BE; Hochschild A
    Elife; 2015 Sep; 4():. PubMed ID: 26371553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation.
    Grohmann D; Nagy J; Chakraborty A; Klose D; Fielden D; Ebright RH; Michaelis J; Werner F
    Mol Cell; 2011 Jul; 43(2):263-74. PubMed ID: 21777815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factor-dependent archaeal transcription termination.
    Walker JE; Luyties O; Santangelo TJ
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6767-E6773. PubMed ID: 28760969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crenarchaeal DNA damage-inducible transcription factor B paralogue TFB3 is a general activator of transcription.
    Paytubi S; White MF
    Mol Microbiol; 2009 Jun; 72(6):1487-99. PubMed ID: 19460096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure and activities of the archaeal transcription termination factor Eta detail vulnerabilities of the transcription elongation complex.
    Marshall CJ; Qayyum MZ; Walker JE; Murakami KS; Santangelo TJ
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2207581119. PubMed ID: 35917344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of promoter-proximal transcription elongation: enhanced DNA scrunching drives λQ antiterminator-dependent escape from a σ70-dependent pause.
    Strobel EJ; Roberts JW
    Nucleic Acids Res; 2014 Apr; 42(8):5097-108. PubMed ID: 24550164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble.
    Liu TY; Liu JJ; Aditham AJ; Nogales E; Doudna JA
    Nat Commun; 2019 Jul; 10(1):3001. PubMed ID: 31278272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin architecture underpinning transcription elongation.
    Lee K; Blobel GA
    Nucleus; 2016 Jul; 7(4):1-8. PubMed ID: 27366856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth phase-dependent gene regulation in vivo in Sulfolobus solfataricus.
    DeYoung M; Thayer M; van der Oost J; Stedman KM
    FEMS Microbiol Lett; 2011 Aug; 321(2):92-9. PubMed ID: 21595744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coliphage HK022 Nun protein inhibits RNA polymerase translocation.
    Vitiello CL; Kireeva ML; Lubkowska L; Kashlev M; Gottesman M
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):E2368-75. PubMed ID: 24853501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle.
    Skinner GM; Baumann CG; Quinn DM; Molloy JE; Hoggett JG
    J Biol Chem; 2004 Jan; 279(5):3239-44. PubMed ID: 14597619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoter Escape with Bacterial Two-component σ Factor Suggests Retention of σ Region Two in the Elongation Complex.
    Sengupta S; Prajapati RK; Mukhopadhyay J
    J Biol Chem; 2015 Nov; 290(47):28575-28583. PubMed ID: 26400263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of σ
    Gao F; Ye F; Zhang B; Cronin N; Buck M; Zhang X
    Proc Natl Acad Sci U S A; 2024 Jan; 121(2):e2309670120. PubMed ID: 38170755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between σ region 3.2 and secondary channel factors during promoter escape by bacterial RNA polymerase.
    Petushkov I; Esyunina D; Mekler V; Severinov K; Pupov D; Kulbachinskiy A
    Biochem J; 2017 Dec; 474(24):4053-4064. PubMed ID: 29101286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot and crispy: CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus.
    Zhang J; White MF
    Biochem Soc Trans; 2013 Dec; 41(6):1422-6. PubMed ID: 24256231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. σ38-dependent promoter-proximal pausing by bacterial RNA polymerase.
    Petushkov I; Esyunina D; Kulbachinskiy A
    Nucleic Acids Res; 2017 Apr; 45(6):3006-3016. PubMed ID: 27928053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of transcription elongation in archaea.
    Werner F
    Chem Rev; 2013 Nov; 113(11):8331-49. PubMed ID: 24024741
    [No Abstract]   [Full Text] [Related]  

  • 20. Isolation of E. coli RNA polymerase transcription elongation complexes by selective solid-phase photoreversible immobilization.
    Strobel EJ
    Methods Enzymol; 2023; 691():223-250. PubMed ID: 37914448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.