BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34536319)

  • 1. Identification of Gip as a novel phage-encoded gyrase inhibitor protein of Corynebacterium glutamicum.
    Kever L; Hünnefeld M; Brehm J; Heermann R; Frunzke J
    Mol Microbiol; 2021 Nov; 116(5):1268-1280. PubMed ID: 34536319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silencing of cryptic prophages in Corynebacterium glutamicum.
    Pfeifer E; Hünnefeld M; Popa O; Polen T; Kohlheyer D; Baumgart M; Frunzke J
    Nucleic Acids Res; 2016 Dec; 44(21):10117-10131. PubMed ID: 27492287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3.
    Frunzke J; Bramkamp M; Schweitzer JE; Bott M
    J Bacteriol; 2008 Jul; 190(14):5111-9. PubMed ID: 18487330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytometry meets next-generation sequencing - RNA-Seq of sorted subpopulations reveals regional replication and iron-triggered prophage induction in Corynebacterium glutamicum.
    Freiherr von Boeselager R; Pfeifer E; Frunzke J
    Sci Rep; 2018 Oct; 8(1):14856. PubMed ID: 30291266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.
    Donovan C; Heyer A; Pfeifer E; Polen T; Wittmann A; Krämer R; Frunzke J; Bramkamp M
    Nucleic Acids Res; 2015 May; 43(10):5002-16. PubMed ID: 25916847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
    Baumgart M; Unthan S; Rückert C; Sivalingam J; Grünberger A; Kalinowski J; Bott M; Noack S; Frunzke J
    Appl Environ Microbiol; 2013 Oct; 79(19):6006-15. PubMed ID: 23892752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-cell level.
    Nanda AM; Heyer A; Krämer C; Grünberger A; Kohlheyer D; Frunzke J
    J Bacteriol; 2014 Jan; 196(1):180-8. PubMed ID: 24163339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations.
    Helfrich S; Pfeifer E; Krämer C; Sachs CC; Wiechert W; Kohlheyer D; Nöh K; Frunzke J
    Mol Microbiol; 2015 Nov; 98(4):636-50. PubMed ID: 26235130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptic-Prophage-Encoded Small Protein DicB Protects
    Ragunathan PT; Vanderpool CK
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31527115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bacteriophage LUZ24 "Igy" peptide inhibits the Pseudomonas DNA gyrase.
    De Smet J; Wagemans J; Boon M; Ceyssens PJ; Voet M; Noben JP; Andreeva J; Ghilarov D; Severinov K; Lavigne R
    Cell Rep; 2021 Aug; 36(8):109567. PubMed ID: 34433028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Sequence of the Bacteriophage CL31 and Interaction with the Host Strain
    Hünnefeld M; Viets U; Sharma V; Wirtz A; Hardy A; Frunzke J
    Viruses; 2021 Mar; 13(3):. PubMed ID: 33802915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
    Lubitz D; Wendisch VF
    BMC Microbiol; 2016 Oct; 16(1):235. PubMed ID: 27717325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level.
    Kortmann M; Kuhl V; Klaffl S; Bott M
    Microb Biotechnol; 2015 Mar; 8(2):253-65. PubMed ID: 25488698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.
    Mustaev A; Malik M; Zhao X; Kurepina N; Luan G; Oppegard LM; Hiasa H; Marks KR; Kerns RJ; Berger JM; Drlica K
    J Biol Chem; 2014 May; 289(18):12300-12. PubMed ID: 24497635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gyramides prevent bacterial growth by inhibiting DNA gyrase and altering chromosome topology.
    Rajendram M; Hurley KA; Foss MH; Thornton KM; Moore JT; Shaw JT; Weibel DB
    ACS Chem Biol; 2014 Jun; 9(6):1312-9. PubMed ID: 24712739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella.
    Bearson BL; Brunelle BW
    Int J Antimicrob Agents; 2015 Aug; 46(2):201-4. PubMed ID: 26078016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level.
    Altuvia S; Storz G; Papenfort K
    Microbiol Spectr; 2018 Jul; 6(4):. PubMed ID: 30006994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. recF-dependent induction of recA synthesis by coumermycin, a specific inhibitor of the B subunit of DNA gyrase.
    Smith CL
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2510-3. PubMed ID: 6302690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prophage induction by DNA topoisomerase II poisons and reactive-oxygen species: role of DNA breaks.
    DeMarini DM; Lawrence BK
    Mutat Res; 1992 May; 267(1):1-17. PubMed ID: 1373845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discoordinate gene expression of gyrA and gyrB in response to DNA gyrase inhibition in Escherichia coli.
    Neumann S; Quiñones A
    J Basic Microbiol; 1997; 37(1):53-69. PubMed ID: 9090126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.