These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 34536475)
21. Soy Protein Isolate/Genipin-Based Nanoparticles for the Stabilization of Pickering Emulsion to Design Self-Healing Guar Gum-Based Hydrogels. Xiao L; Hou Y; Xue Z; Bai L; Wang W; Chen H; Yang H; Yang L; Wei D Biomacromolecules; 2023 May; 24(5):2087-2099. PubMed ID: 37079862 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of multifunctional Guar gum-silver nanocomposite hydrogels for biomedical and environmental applications. Palem RR; Shimoga G; Kang TJ; Lee SH Int J Biol Macromol; 2020 Sep; 159():474-486. PubMed ID: 32437816 [TBL] [Abstract][Full Text] [Related]
23. Biodegradable hydrogels based on novel photopolymerizable guar gum-methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds. Tiwari A; Grailer JJ; Pilla S; Steeber DA; Gong S Acta Biomater; 2009 Nov; 5(9):3441-52. PubMed ID: 19505599 [TBL] [Abstract][Full Text] [Related]
24. pH-Responsive guar gum hydrogels for controlled delivery of dexamethasone to the intestine. Das S; Subuddhi U Int J Biol Macromol; 2015 Aug; 79():856-63. PubMed ID: 26056988 [TBL] [Abstract][Full Text] [Related]
25. Enhanced adsorption of Cr(VI) from water by guar gum based composite hydrogels. Maity J; Ray SK Int J Biol Macromol; 2016 Aug; 89():246-55. PubMed ID: 27086296 [TBL] [Abstract][Full Text] [Related]
26. Ultra-stretchable, adhesive, fatigue resistance, and anti-freezing conductive hydrogel based on gelatin/guar gum and liquid metal for dual-sensory flexible sensor and all-in-one supercapacitors. Zhao R; Fang Y; Zhao Z; Song S Int J Biol Macromol; 2024 Jun; 271(Pt 2):132585. PubMed ID: 38810849 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and characterization of novel guar gum hydrogels and their use as Cu2+ sorbents. Chauhan K; Chauhan GS; Ahn JH Bioresour Technol; 2009 Jul; 100(14):3599-603. PubMed ID: 19342225 [TBL] [Abstract][Full Text] [Related]
28. Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release. Ghosh SK; Das A; Basu A; Halder A; Das S; Basu S; Abdullah MF; Mukherjee A; Kundu S Int J Biol Macromol; 2018 Dec; 120(Pt B):1823-1833. PubMed ID: 30287366 [TBL] [Abstract][Full Text] [Related]
29. Guar gum-crosslinked-Soya lecithin nanohydrogel sheets as effective adsorbent for the removal of thiophanate methyl fungicide. Sharma G; Kumar A; Devi K; Sharma S; Naushad M; Ghfar AA; Ahamad T; Stadler FJ Int J Biol Macromol; 2018 Jul; 114():295-305. PubMed ID: 29572143 [TBL] [Abstract][Full Text] [Related]
30. Highly conductive, rapid self-healing, and anti-freezing poly(3,4-ethylenedioxythiophene)/lignosulfonate-cationic guar gum ionogels for multifunctional sensors. Li N; Qiu L; Li B; Feng L; Qu S; Ji X; Chen W Int J Biol Macromol; 2024 Aug; 274(Pt 1):133159. PubMed ID: 38880459 [TBL] [Abstract][Full Text] [Related]
31. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor. Wang T; Ren X; Bai Y; Liu L; Wu G Carbohydr Polym; 2021 Feb; 254():117298. PubMed ID: 33357866 [TBL] [Abstract][Full Text] [Related]
32. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232 [TBL] [Abstract][Full Text] [Related]
33. Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. Sharma R; Kaith BS; Kalia S; Pathania D; Kumar A; Sharma N; Street RM; Schauer C J Environ Manage; 2015 Oct; 162():37-45. PubMed ID: 26217888 [TBL] [Abstract][Full Text] [Related]
34. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors. Cui C; Shao C; Meng L; Yang J ACS Appl Mater Interfaces; 2019 Oct; 11(42):39228-39237. PubMed ID: 31550132 [TBL] [Abstract][Full Text] [Related]
35. Preparation and characterization of guar gum hydrogels as carrier materials for controlled protein drug delivery. Kono H; Otaka F; Ozaki M Carbohydr Polym; 2014 Oct; 111():830-40. PubMed ID: 25037422 [TBL] [Abstract][Full Text] [Related]
36. Fabrication of self-healing nanocomposite hydrogels with the cellulose nanocrystals-based Janus hybrid nanomaterials. Cao L; Tian D; Lin B; Wang W; Bai L; Chen H; Yang L; Yang H; Wei D Int J Biol Macromol; 2021 Aug; 184():259-270. PubMed ID: 34126148 [TBL] [Abstract][Full Text] [Related]
37. Near-Infrared Light-Responsive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels with Ultrahigh Tensibility. Shi K; Liu Z; Wei YY; Wang W; Ju XJ; Xie R; Chu LY ACS Appl Mater Interfaces; 2015 Dec; 7(49):27289-98. PubMed ID: 26580856 [TBL] [Abstract][Full Text] [Related]
38. Graft polymerization of guar gum with acryl amide irradiated by microwaves for colonic drug delivery. Shahid M; Bukhari SA; Gul Y; Munir H; Anjum F; Zuber M; Jamil T; Zia KM Int J Biol Macromol; 2013 Nov; 62():172-9. PubMed ID: 23973495 [TBL] [Abstract][Full Text] [Related]
39. Mechanically strong and pH-responsive carboxymethyl chitosan/graphene oxide/polyacrylamide nanocomposite hydrogels with fast recoverability. Chen Y; Wang H; Yu J; Wang Y; Zhu J; Hu Z J Biomater Sci Polym Ed; 2017 Nov; 28(16):1899-1917. PubMed ID: 28726563 [TBL] [Abstract][Full Text] [Related]
40. Chemically crosslinked guar gum hydrogels: An investigation on the water transport and its relationship with hydrocortisone release. Reis AC; Dos Santos LV; Santos KR; Lima-Tenório MK; Paludo KS; Maurício MR; Rubira AF; Viana AG; Tenório-Neto ET Int J Pharm; 2022 Apr; 617():121626. PubMed ID: 35245639 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]