BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34536587)

  • 1. Organic mercury solid phase chemoselective capture for proteomic identification of S-nitrosated proteins and peptides.
    Doulias PT; Tenopoulou M; Zakopoulos I; Ischiropoulos H
    Nitric Oxide; 2021 Dec; 117():1-6. PubMed ID: 34536587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic approaches to evaluate protein S-nitrosylation in disease.
    López-Sánchez LM; López-Pedrera C; Rodríguez-Ariza A
    Mass Spectrom Rev; 2014; 33(1):7-20. PubMed ID: 23775552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNO spectral counting (SNOSC), a label-free proteomic method for quantification of changes in levels of protein S-nitrosation.
    Zhang X; Huang B; Chen C
    Free Radic Res; 2012 Aug; 46(8):1044-50. PubMed ID: 22512350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic and mass spectroscopic quantitation of protein S-nitrosation differentiates NO-donors.
    Sinha V; Wijewickrama GT; Chandrasena RE; Xu H; Edirisinghe PD; Schiefer IT; Thatcher GR
    ACS Chem Biol; 2010 Jul; 5(7):667-80. PubMed ID: 20524644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the S-nitrosoproteome: tools and strategies.
    López-Sánchez LM; Muntané J; de la Mata M; Rodríguez-Ariza A
    Proteomics; 2009 Feb; 9(4):808-18. PubMed ID: 19160395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and proteomic identification of S-nitrosated proteins in human hepatocytes.
    López-Sánchez LM; Corrales FJ; De La Mata M; Muntané J; Rodríguez-Ariza A
    Methods Enzymol; 2008; 440():273-81. PubMed ID: 18423224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-nitrosated proteomic analysis reveals the regulatory roles of protein S-nitrosation and S-nitrosoglutathione reductase during Al-induced PCD in peanut root tips.
    Pan C; Li X; Yao S; Luo S; Liu S; Wang A; Xiao D; Zhan J; He L
    Plant Sci; 2021 Jul; 308():110931. PubMed ID: 34034861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic identification of S-nitrosylated proteins in endothelial cells.
    Martínez-Ruiz A; Lamas S
    Methods Mol Biol; 2007; 357():215-23. PubMed ID: 17172690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation.
    Wolhuter K; Whitwell HJ; Switzer CH; Burgoyne JR; Timms JF; Eaton P
    Mol Cell; 2018 Feb; 69(3):438-450.e5. PubMed ID: 29358077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomic analysis of S-nitrosated proteins in diabetic mouse liver with ICAT switch method.
    Zhang X; Huang B; Zhou X; Chen C
    Protein Cell; 2010 Jul; 1(7):675-87. PubMed ID: 21203939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and quantification of protein
    Chouchani ET; James AM; Methner C; Pell VR; Prime TA; Erickson BK; Forkink M; Lau GY; Bright TP; Menger KE; Fearnley IM; Krieg T; Murphy MP
    J Biol Chem; 2017 Sep; 292(35):14486-14495. PubMed ID: 28710281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of protein S-nitrosation using irreversible biotinylation procedures (IBP).
    Huang B; Chen C
    Free Radic Biol Med; 2010 Aug; 49(3):447-56. PubMed ID: 20466056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of site-specific proteomic approach for study protein S-nitrosylation.
    Liu M; Talmadge JE; Ding SJ
    Amino Acids; 2012 May; 42(5):1541-51. PubMed ID: 22476348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic methods for analysis of S-nitrosation.
    Kettenhofen NJ; Broniowska KA; Keszler A; Zhang Y; Hogg N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 851(1-2):152-9. PubMed ID: 17360249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ESNOQ, proteomic quantification of endogenous S-nitrosation.
    Zhou X; Han P; Li J; Zhang X; Huang B; Ruan HQ; Chen C
    PLoS One; 2010 Apr; 5(4):e10015. PubMed ID: 20368813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo.
    Rössig L; Fichtlscherer B; Breitschopf K; Haendeler J; Zeiher AM; Mülsch A; Dimmeler S
    J Biol Chem; 1999 Mar; 274(11):6823-6. PubMed ID: 10066732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.
    Batthyány C; Bartesaghi S; Mastrogiovanni M; Lima A; Demicheli V; Radi R
    Antioxid Redox Signal; 2017 Mar; 26(7):313-328. PubMed ID: 27324931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-nitrosation of proteins relevant to Alzheimer's disease during early stages of neurodegeneration.
    Seneviratne U; Nott A; Bhat VB; Ravindra KC; Wishnok JS; Tsai LH; Tannenbaum SR
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):4152-7. PubMed ID: 27035958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteinyl peptide capture for shotgun proteomics: global assessment of chemoselective fractionation.
    Lin D; Li J; Slebos RJ; Liebler DC
    J Proteome Res; 2010 Oct; 9(10):5461-72. PubMed ID: 20731415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria.
    Dahm CC; Moore K; Murphy MP
    J Biol Chem; 2006 Apr; 281(15):10056-65. PubMed ID: 16481325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.